
AO-AO98 348 OHIO STATE UNIV COLUMBUS COMPUTER AND INFORMATION SC--ETC F/B 9/2
SURVEY OF CONCURRENCY CONTROL MECHANISMS FOR CENTRALIZED AND --ETC(U)

FEB 81 D K HSIAO. T N OZSU NOOOI -7-C-0573
UNCLASSIFIED OSU-CISRC-TR-8-1

MEND
-mm

- 36

111111_L.5

M)CROCOY R1,1M O It i HAR!

TECHNICAL
REPORT SERIES

00
90

FISE*I!A noUEiTRE

THE OHIO STATE UNIVERSITY COLUMBUS, OHIO

(OsU-CIw;-TR-81-1)

A SURVEY OF CONCURRENCY CONTROL

MECHANISMS FOR CENTRALIZED AND

DISTRIBUTED DATABASES

by

David K. Hsiao
and

Tamer M. Ozsu

Work performed under

Contract N00014-75-C-0573

Office of Naval Research

Appxovedi tor public !elG1e; 1

Distibutionf Uilin~od|

V
Computer and Information Science Research Center

The Ohio State University

Columbus, OH 43210

February 1981

81 3 16 069

SECURITY CLASSIFICATION OF THIS PAGE OWhen Dot Fntered)

REPORT DOCUMENTATION PAGE -READ INSTRUCTIORNS
ACCESSON O. BEFORE COMPLETING FORMd

. ue, o Concurrency Control Mechanisms T " echnical Yepor..
- for Centralized and Distributed Databases&, N , &~~ ~~..- ".=-., Wn.n R'v NUMBER

7 Re , .4MRAC OR GRANT NeERta)

S/sao N00014-75-C-0573
Tamer M. Ozsu

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Office of Naval Research AREA & WORK UNIT NUMOERS

Information Systems Program 4115-Al
Arlington, Virginia 22217

11. CONTROLLING OFFICE NAME A R!SS 12. REPORT DATE

I. NUMBER OF PAGES

___78
14. MONITORING AGENCY NAME & AOD .dlletent Item Controlling Office) IS. SECURITY CLASS. (at Ihis repoatj

-. ISa. DECLASSIFICATION/OOWNGRADING• ' SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Scientific Officer DDC New York Area --

ONR BRO ONR 437 D B OS ~ _

ACO ONR, Boston

NRL 2627 ONR, Chicago--pproved Uo n pu luseed
ONR 1021P ONR, Pasadena u-*,,,,----

I. DISTRIBUTION STATEMENT (el the abstract entered In Block 20. it different tred Report)

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on teverse side if necesary and Identify by block number)

Concurrency control, synchronization, networks, protocols, locks,
centralized databases, distributed databafes.

7
20. ABSTRACT (Continue an reverse side It necessary and identify by block n"mber)

O , one of the most important problems in the 'design of centralized and distribute
database management systems is the problem of oncurrency contrl. Even though mmn
different solutions have been proposed' os ena unifying theory i
still not in sight. 4'Vis report iWat'Mptto survey all the published proposal
on concurrency control. In particular, a taxnomy is developed for the classifica-
tion of concurrency control techniques for di tributed database systems. The sur-
vey of these twenty some concurrency -control echanisms are in the framework of thi,
ta.,omy. -

DD % :N17 14734 EDITION Of I NOV GS IS OsSOLETE

-" I.. SECURITY CLASSIFICATION OFiinS PAGE (" "vn Onto fnt Id)

SECURITY CLASSIFICATION Or THIS PAGEOPhen Date Entered)

SECURITY CLASSIFICATION Or THIS PACE(U0n DeW tnee..4

1. I

PREFACE

This work was supported by Contract N00014-75-C-0573 from the Office

of Naval Research to Dr. David K. Hsiao, Professor of Computer and Infor-

mation Science, and conducted in the Department of Computer and Informa-

tion Science and at the Computer and Information Science Research Center

of the Ohio State University. The Computer and Information Science Re-

search Center of The Ohio State University is an inter-disciplinary re-

search organization which consists of the staff, graduate students, and

faculty of many University departments and laboratories. This report is

based on research accomplished in the Laboratory for Database Systems Re-

search which was equipped and funded by Digital Equipment Corporation (DEC),

Office of Naval Research (ONR) and Ohio State University (OSU). The DEC-

ONR-OSU contract was administered and monitored by The Ohio State University

Research Foundation.

Accession F o r i

U-announcer"

Avatli It lit', o e __

:A"is ri i './ g

D t i l : . . I -

I

ACKNOWLEDGMENT

We acknowledge herein the examples and figures adopted from published
material. Some of these examples and figures have been changed consider-
ably for the purpose of clarity.

Figure 4 is originated in [Als76]

Figure 5 is derived from [Als76]

Figure 6 is derived from [Als76]

Figure 7 is originated in [Stu78]

* Figure 10. is derived from [E1177b]

Figure 11 is originated in [Ram79]

Figure 12 is derived from [Yam79]

Figure 13 is originated in [Kan79]

Figure 14 is originated in [Ber8Ob]

ii

LIST OF FIGURES

Page'

Figure 1 - An Example of Anomaly Due to Lost Updates 5

Figure 2 - An Example of Anomaly Due to Inconsistent
Retrievals. 6

Figure 3 - An Example of Two-Phase Locking in Centralized
Database Systems. 8

Figure 4- Message Flow in a Resiliency System. 14

Figure 5 - Message Flow When Update Requests are Sent to a
Non-Primary Server 16

Figure 6 - Message Flow Among Participating Servers 18

Figure 7 - State Transitions in Pre-Fmptible Locking Scheme .30

Figure 8 - Summary of WAIT-DIE and WOUND-WAIT Systems. 34

Figure 9 - Five-Node Ring Structure 35

Figure 10 - All Possible States and Steps of the Algorithm 37

Figure 11 - State Transitions in the Global Locking Scheme ... 43

Figure 12 - The Hierarchical Organization of Processes 49

Figure 13 - Synchronization via Counter (Value) or
Logical Clock (Time) 58

Figure 14 - An Example of Conflict Graph 70

TABLE OF CONTENTS

Page

1. INTRODUCTION AND BASIC DEFINITIONS. 1

2. CONCURRENCY CONTROL IN CENTRALIZED ENVIRONMENTS 3

2.1 Problem Definition 3
2.2 Certain Anomalies. 3

2.2.1 Anomaly Due to Lost Update 3
2.2.2 Anomaly Due to Inconsistent Retrievals 4

2.3 The Solution in Centralized Database Systems 4

3. CONCURRENCY CONTROL IN DISTRIBUTED ENVIRONMENTS 9

3.1 Complicating Factors 9
3.2 New Problem Definition 9

4. TAXANOMY OF DISTRIBUTED CONCURRENCY CONTROL TECHNIQUES 10t

5. SURVEY OF CONCURRENCY CONTROL TECHNIQUES 12

5.1 Locking-Based Approaches. 12

5.1.1 The Resiliency Scheme - A Primary-Site
Locking Technique 12

5.1.2 Another Primary-Site Locking Technique. 17
5.1.3 Centralized Locking Technique 21
5.1.4 Primary-Copy Locking Technique. 24
5.1.5 Distributed Locking Scheme. 26
5.1.6 Pre-emptible Distributed Locking Scheme. 28
5.1.7 Migration Checking Scheme 32
5.1.8 Locking-Based Ring Scheme 33
5.1.9 Posted Update Scheme. 40
5.1.10 Global Locking Scheme 42
5.1.11 System-Wide Locking Scheme. 45
5.1.12 Hierarchical Site Locking Scheme. 48
5.1.13 System-Wide Ordering Scheme 52
5.1.14 Counter Synchronization Scheme. 55
5.1.15 Control Token/Ticketing Scheme. 57
5.1.16 Read-Driven Synchronization Scheme. 59
5.1.17 Optimistic/Pessimistic Schemes. 61
5.1.18 Another Site-Locking Scheme 62

5.2 Majority Consensus Approach 64
5.3 Conflict Analysis Approach. 68

6. CONCLUDING REMARKS 72

REFERENCES. 74

1. INTRODUCTION AND BASIC DEFINITIONS

One of the main thrusts for the development of database systems is the

demand of the users to use the same data provided by the system rather than

to maintain their own copies. The benefits of this demand are discussed

extensively in literature [Dat77]. However, the demand brings along a

serious problem of coordinating concurrent accesses of multiple users to

shared databases so that they do not interfere and destroy each other's

access. This is the concurrency control problem.

The concurrency control problem in an environment, where there is at

a centralized site a single copy of the database shared by multiple users,

is extensively studied and well understood. For such an environment,

solutions are now at hand. We will discuss a generally accepted solution

in Section 2.

Another way to organize a database involves the distribution of copies

of the database over the nodes of a computer network. Concurrency control

problem in such a distributed environment is considerably more difficult to

formalize and solve. Even though a large number of solutions has been pro-

posed, we still lack a unifying theory.

This report is mainly written to survey the various approaches devel-

oped for concurrency control in distributed database environments. The

solution for concurrency control in centralized database environment pro-

vided in Section 2 can aid our understanding of the concurrency control

problem in distributed environments. It also serves as a basis for the

subsequent discussions in the sections which follow. In Section 3, we

will present the problem in a distributed environment and indicate what

additional issues have to be dealt with in such an environment. In Section

4, a taxanomy of concurrency control techniques in distributed environ-

ments will be developed. Finally, in Section 5, we will examine the known

approaches to the concurrency control problem in distributed environments.

Even though we will give some of the basic definitions in the remain-

der of this section, we assume that the reader is familiar with the basic

database concepts. Specifically, we expect the reader to have a knowledge

of database systems at the level of [Dat77] and (Sib76].

We call a system where there is a single central copy of the database

which all the users share and access locally a centralized database system.

On the other hand, if the database resides on one or more nodes of a com-

-2-

puter network and the users can access the database via the network, as

well as locally, then such a system is called a distributed database

system.

Users interact with the database by issuing transactions, each of

which is either a query expressed in a high-level data language or a pro-

gram written in a host language embedded with data language constructs.

We assume that transactions are complete and internally consistent. In

other words, if they run alone they will terminate and they will not

violate any integrity constraint that may have been imposed upon the data

that they manipulate.

Each transaction may have a read-set, which is the set of data items

that it reads, and a write-set, which is the set of data items that it

writes. Two transactions are said to be in conflict if the intersection

of the write-set of one with the read-set (or write-set) of the other is

not null.

Concurrency of transactions refers to the execution of more than

one transaction at the same time. More precisely, it refers to the exe-

cution of one transaction before the completion of other outstanding

transactions.

For each transaction we define the following two concepts: intra-

consistency and inter-consistency. By intra-consistency we mean that the

read and write operations carried out by a transaction do not violate any

integrity constraint that may have been placed on the read-set and write-

set of the transaction. Our assumption on the nature of the transactions

implies that intra-consistency is somehow maintained and we do not intend

to tackle that problem here. Inter-consistency, on the other hand, has to

do with the concurrent execution of multiple transactions and concerns

with the following two rules:

(1) that each transaction sees consistent data at all times, and

(2) that concurrent execution of transactions leaves the database

in the same state as it would have been in if each transaction

was executed alone until completion without the presence of

other transactions.

~.1

-3-

2. CONCURRENCY CONTROL IN CENTRALIZED ENVIRONMENTS

In this section we will review the basic concurrency control concepts.

To this end, we will first define the concepts and then state the problem.

Next, we will analyze the problem in a centralized database system environ-

ment and give a solution which is typical for such an environment.

2.1 Problem Definition

With the definitions given in the previous section, the problem of con-

currency control can be more precisely stated as the problem of synchro-

nizing concurrent transactions such that inter-consistency of the database

is maintained while, at the same time, maximum concurrency (i.e., the maxi-

mal number of transactions being executed) is achieved. The "maximum"

concurrency implies the "best" transaction turn-around time which is in-

trinsic to the "best" response time of the system. However, the maximum

concurrency does not necessarily imply "best" system throughput, since

concurrency mechanisms require additional system resources.

2.2 Certain Anomalies

If concurrent transactions do not maintain inter-consistency over the

database, two important anomalies can occur. We will discuss these anom-

alies below.

2.2.1. Anomaly Due to Lost Update
Consider the following two transactions, i.e., Ti and T2:

T1 Read(X) T2 Read(X)

Compute new value of X Compute new value of X

Write(X) Write(X)

The concurrent existence of two such transactions is not hard to visualize.

In these two transactions we assume that the computations of new

values of X produce different results in the two transactions even if they

had read the same old value of X (e.g., one can add a constant while the

other can subtract one). It is then possible that both transactions read

the value of X at almost the same time, compute different values, and

write the new values at almost the same time. In this case, the effect of

the first Write will be overwritten by the second Write. In fact, one of

the updates will be lost in the sense that its effect is not reflected in

the final state of the database. A timing sequence of the example that

-4-

would create this problem is depicted in Figure 1. Clearly, the second

rule of inter-consistency as stated in Section 1 is not maintained. For

a more extensive discussion of update anomaly and a real-life example for

automatic funds transfer systems, the reader may refer to [Ber80a].

2.2.2. Anomaly Due to Inconsistent Retrievals

Consider the following two transactions, Ti & T2:

Ti Read(X) T2 Read(X)

Compute new value of X Read(Y)

Write(X)

Read (Y)

Compute new value of Y

Write(Y)

If these two transactions are executing concurrently, and T2 reads

Y before T1 writes the new value of Y, it actually sees inconsistent

data, since the value of Y is being modified. Unlike the anomaly

due to lost updates, the final state of the database will obey the

second rule of inter-consistency, but the first rule will be violated.

Thus, there is a timing sequence which will cause one transaction to effect

the other in a manner that one of them will violate either the rule one or

the rule two of the inter-consistency. Such a timing sequence is depicted

in Figure 2.

2.3 The Solution in Centralized Database Systems

The concurrency control problem for centralized database systems is

considered to be solved. A typical solution, known as the two-phase lock-

mechanism [Esw76], is discussed in this section.

For this mechanism to work, a lock is associated with each data item

in the database. When a transaction attempts to access, i.e., read or

write, a data item, it first has to obtain the associated lock. Only after

it gets the lock, can it access the data item. A lock request by a trans-

action is granted, only if that lock is not being held by any other trans-

action. Otherwise, the request is deferred.

For the transactionsthe database system handles both the issuing of

lock requests and the granting of locks. Therefore, the entire concurrency

control mechanism is transparent to the user except that occasional delays

may be noticeable in the execution of transactions due to the waiting on

-5-

Sequence of Execution

TI Read(X)

T2 Read(X)

Ti Compute new value of X

T2 Compute new value of X

TI Write(X)

T2 Write(X)

At the completion of transactions Ti and T2:

The new value of Tl's X is lost.

Figure 1 - An Example of Anomaly Due to Lost Updates

-6-

Sequence of Execution

Ti Read(X)

Ti Compute new value of X

Ti Write(X)

TI Read(Y)

T2 Read(X)
T1 Compute new value of Y

T2 Read(Y)

T1 Write(Y)

Consequence of the Execution:

T2 reads inconsistent value of Y

FD

Figure 2 - Mn Example of Anomaly Due to Inconsistent Retrievals

-7-

locks. The system is also responsible for detecting and recovering fron

deadlocks over locks. This may be accomplished by using deadlock graphs.

One of the most important theorems of concurrency control [Esw76] is

that this mechanism is sufficient to guarantee inter-consistency as long

as no transaction causes a new lock request to be issued for any lock

after the transaction has caused the release of anyone of its present

locks. Thus, a transaction should not cause the release of its locks,

until it completes its execution.

As an example, Figure 3 shows how this mechanism may be employed for

transaction T1 depicted originally in Figure 2. We note that in this

example the other transaction, namely T2, will not be able to read the

value of Y unless and until TI has completed its run, i.e., has caused the

lock on Y to be released. In a later time, T2 would be able to lock on Y

and read Y accordingly. By this time, the value of Y has long been com-

puted and the new value will be read by T2. Thus, T2 would not read in-

consistent values, but the new value, of Y.

TI Lock(X)

TI Read(X)

Ti Compute new value of X

TI Write(X)

TI Lock(Y)

TI Read(Y)

T2 Lock(Y) (T2 wants to read Y, causes
a lock request to be issued;
the request is deferred by
the system.)

Ti Compute new value of Y

TI Write(Y)

Ti Release(X)

TI Release(Y)

T2 Lock(Y) (Previous lock request is now granted)

T2 Release(Y)

Figure 3 - An Example of Two-Phase Locking

in Centralized Database Systems

-9-

3. CONCURRENCY CONTROL IN DISTRIBUTED ENVIRONMENTS

The concurrency control problem takes on additional complexity in a

distributed environment, even though the basic underlying principles are

the same. In this section we will first discuss the issues that increase

the complexity of the problem and then restate the problem in the light

of these issues.

3.1 Complicating Factors

First of all, data may be replicated in a distributed environment.

In other words, same data may be stored in multiple sites. This duplica-

tion is mainly due to reliability and proximity considerations. Conse-

quently, the distributed database system is responsible (1) for choosing

one of the stored copies of the requested data for access if the request

is a retrieval request, and (2) for making sure that the effects of an

updace is reflected on each and every copy of that data if the request is

an update.

Secondly, if some sites fail (due to, e.g., either hardware or soft-

ware malfunction) or if some communication links fail (making some of the

linked sites unreachable) while an update is being executed, the system

must make sure that the effects will be reflected on the data residing on

the failing or unreachable sites as soon as the system can recover from

the failure.

The third point is that since each site cannot have immediate infor-

mation on the actions currently being carried out on the other sites, syn-

chronization of transactions on multiple sites is considerably harder than

synchronization of transactions on a single centralized site.

3.2 New Problem Definition

The duplication of data over the nodes of a network require the defi-

nition of a third type of consistency, in addition to those discussed in

the previous section. We define mutual consistency to mean that all the

copies of every data item in the database have identical values when all

of the concurrently running transactions terminate.

Within this framework, the problem of concurrency control in distri-

buted environments is defined as the problem of, at the same time, main-

taining both the mutual consistency and inter-consistency on the one hand

and achieving maximum concurrency on the other hand.

- 10-

4. TAXANOMY OF DISTRIBUTED CONCURRENCY CONTROL TECHNIQUES

A number of suggestions has been made on the possible classifications

of these techniques [Ad1791, [Bad8O], [BerT9, [Gar79] and [Rot77]. One

way to classify concurrency control techniques may be based upon the type

of synchronization primitive used (e.g., locking) and the place where syn-

chronization is enforced (e.g., at a single site or on all sites). Another

criterion may be the degree of data replication. Some of the techniques

require that all the sites have identical copies of the entire database (the

so called fully-duplicated case) while others can operate with parts of the

database duplicated on several sites (i.e., partially-duplicated case). A

third possibility for distributed data is to partition the database and let

each partition reside at only one site (i.e., partitioned case). In this

case, even though the database is distributed, each data item resides at

only one site.

In this report we will develop and follow yet another classification

which is based on the first criterion discussed above. This classification

is an extended and refined version of fBer79]. According to this criterion,

the approaches to concurrency control may be classified into three major

categories:

(A) locking-based,

(B) majority consensus, and

(C) pre-analysis.

In the locking-based approach, the synchronization of transactions Is

achieved by employing locks on the database or on the sites. The locking-

based approach is further subdivided into two groups:

(a) data locking and

(b) site locking.

In the data locking approach, there are three finer subgroups:

(1) central locking,

(ii) distributed locking, and

(iii) migration checking.

In central locking, the responsibility of granting and releasing locks

is given to a single site. This site may be chosen by either of the follow-

ing two approaches: primary-site locking, where one of the nodes in the net-

work is designated as the primary site and given the responsibility of grant-

ing and releasing locks to all transactions; primary-copy locking, where one

of the copies of each data item is designated as the primary copy and it is

this copy that has to be locked for the purpose of accessing that particular

data item. In distributed locking approach, the responsibility of managing

locks and lock requests is not delegated to one site but exercised jointly

by all of the participating sites. In the migration checking aproach the

transaction migrates from one site to another during execution. At each

site, the system checks whether the migrating transaction demands a locked

access made by an existing transaction. If the access is not locked, the

migrating transaction is executed. If the access is locked, then either

the migrating transaction may have to wait and to be restarted later or the

transaction which currently holds the lock may have to be aborted and re-

started later.

In the site locking approach, the transactions are synchronized using

unique timestamps assigned to each of them. Sites execute transactions in

timestamp order, one at a time. This category may be further subdivided

into two groups:

(i) All-site locking, and

(ii) Individual-site locking.

In the all-site locking, all the sites in the system are synchronized

so that they all execute the same transaction simultaneously, effectively

locking the entire system to carry out a single transaction. In the indivi-

dual-site locking, each site executes one transaction at a time without run-

ning them concurrently. However, each site executes transactions at its own

pace, resulting different sites executing different transactions at a given

time.

The majority consensus approach is a voting algorithm which requires

that each of the database sites in the network vote on an update transaction.

If the majority of the sites votes affirmatively, then the transaction is

accepted. Otherwise, it is to be restarted later.

The pre-analysis approach requires the use of a number of protocols each

of which is designed to synchronize transactions under certain known condi-

tions. The basic premise is that by analyzing the transactions, the system

may classify the transactions and determine the necessary protocols which will

facilitate the synchronization for the classes of the transactions. By knowing

the protocols employed by each class of transactions, the system can then de-

termine the condition under which the class of transactions may be executed.

The run-time synchronization effort is therefore reduced to simply carrying out

the execution of the transactions in the order dictated by the condition with

relevant protocols.

- 12 -

5. SURVEY OF CONCURRENCY CONTROL TECHNIQUES

In this section we will describe each of the algorithms that have

been proposed for the concurrency control problem in distributed environ-

ments. It should be noted that our aim is not a formal and detailed pre-

sentation of the algorithms, but rather it is to point out the basic ideas

and to describe intuitively how the algorithms work. For more formal and

detailed discussions, the reader should refer to the original sources as

cited in the references. The following discussion is organized according

to the taxanomy discussed in the previous section.

5.1 Locking-Based Approaches

In the following sections we will discuss algorithms which use lock-

ing for synchronization. The first three are of primary-site locking;

the other is of primary-copy locking. All four are in the category of cen-

tral locking. The next two are of distributed locking which are followed

by a migration checking scheme. Still next, we discuss eleven schemes which

fall under the category of site locking schemes. Four of these require the

entire system to be locked whereas the remaining seven lock only individual

sites.

5.1.1 The Resiliency Scheme - A Primary-Site Locking Technique

The resiliency scheme 1Als76] is a primary-site locking technique where

the main emphasis is on reliability and serviceability. The concept of

resiliency is "the ability to detect and recover from a maximum number of

errors", of particular importance is the concept of n-host resiliency

which is defined as the ability of the system to continue the transaction

in the case of simultaneous failure of (n-1) hosts in a critical phase of

service.

In the following, a two-host resiliency algorithm will be considered.

Nodes of the network are considered in two cases: (1) the case of dedicated

servers where a subset of the sites in the network are designated as server

hosts which are the only hosts that carry out transactions; and (2) the case

of participating servers where every host in the network can execute trans-

actions against the database. We give algorithms for each of these cases.

We should note that the technique works on fully-duplicated databases.

- 13 -

Case 1: Dedicated Servers

In this case, besides the server hosts, each of the hosts where a

transaction can be generated is called an application host. Thus, server

hosts can at the same time be application hosts. Furthermore, there is an

ordering of the server hosts which is transparent to the application hosts.

However, this ordering is known to all server hosts.

One of the server hosts is designated as the primary host and the

others are backup hosts. All the update transactions are initiated by the

primary server host. Since the application hosts do not have knowledge on

the ordering of the server hosts, a transaction that is generated on an

application host may be forwarded to any of the servers. However, the re-

ceiver server does not act upon this 'ransaction if it is not the primary

server. Instead, the receiver herver forwards this transaction to the

primary host. This case becc:r-; simpler where the primary host is the one

that first receives all transa&tions.

The flow of messageq r 'he hosts, in the presence of five hosts,

is depicted in Figure 4. For simplicity, we will assume that

(1) the generated trav-saction is forwarded directly to the primary

host;

(2) two-host resiliency will be maintained; and

(3) only the processing of the update transactions will be considered.

The message flow does not change for retrieve transactions, but the

processing at each site changes. Most messages and servers are numbered.

The reader should refer to Figure 4 in going over the algorithms.

Algorithm:

Let n be the number of server hosts and i be the current server host.
For i=l, the server host is the primary.

Step 1: (TRANSACTION INITIATION] The update transaction generated in an
application host is forwarded to the primary server host (i.e.,
i-l) (See the message #0 in Figure 4).

Step 2: [PRIMARY LOCAL UPDATE AND SYNCHRONIZATION] The primary host per-
forms a synchronization operation (what that may be is a design
decision) and requests the cooperation of the first backup server
host (See message #1 in Figure 4). Note that at this point the
primary host has already updated its database.

Step 3: [FIRST BACKUP EXECUTES] Server host 2 updates its database and (
issues three messages: a backup request to the next server host
(1-3) (by means of the message #2a), an update acknowledgement

- 14 -

Primary cooperate #1 backup #2a

host reusqusqu t

sre coprt svrserver server
hot#2b hos akphs akp host

0 by ack #2c by ack #3c b

Figure 4. Message Flow in a Resiliency System

(update ack) to the application host (the message #2d) and a
cooperation acknowledgement (cooperate ack) to the previous
host (in this case, the server host 1; the message #2b). The up-
date acknowledgement is sent to the application host from server
host 2, thus, two-host resiliency is achieved as soon as is
server host gets the transaction.

As suggested in [Als06], these three messages can be issued simul-
taneously, or in the order of backup request (i.e., 112a), update
acknowledgement (#2d) and cooperation acknowledgement (#2b).
If issued in this order, an increase in resiliency may be
achieved.

Step 4: [SECOND BACKUP EXECUTES] Server host i updates its database. If
it is the last server host, skip to Step 5. Otherwise, the server
issues two messages: a backup request message to host (i+l)
(i.e., via message I/ia) and a backup acknowledgement (backup ack)
to host (i-1) (i.e., via message #ib). Then skip to Step 6.

Step 5: [LAST HOST EXECUTES) If the update transaction has reached the
last server host, two messages are issued: a backup acknowledge-
ment (i.e., message #ib) and a backup-forwarded acknowledgement
(of ack or message #ic) both to the host (i-l). The algorithm
then terminates.

Step 6: [BACKWARD ACKNOWLEDGEMENT] Host (i-l), upon receiving the backup
acknowledgement message from the host i issues a backup-forwarded
acknowledgement to the host (1-2) (i.e., message #(i-l)c).

Step 7: Increasing i by 1 and repeating steps 4-6 again.

It is clear that at every stage, there are two hosts which have the

update transaction. So, two-node resiliency is maintained throughout. I

As we mentioned before, the application host does not have to direct

an update request to the primary host; it may send the request to one of

the backup servers. In this case, the backup server forwards the request

to the primary host. The primary host requests the backup of the next

backup server host, acknowledges the update to the application host, and

acknowledges the forwarding of the transaction. This is depicted in

Figure 5. In this setting, the update acknowledgement is done by the pri-

mary host, since the two-host resiliency is maintained as soon as the pri-

mary host receives the transaction. Then Steps 4-7 of the above algorithms

are followed.

Case 2: Participating Servers

The other case to consider is what happens if there is no set of

specially designated server hosts. In this case every host is a server.

When a transaction is generated in a backup server host, it is transmitted

to the primary server. The primary server host acknowledges the receipt

- 16-

forward request

hotbaeku

server request server server

forward
acknowledgment

update

acknowledgment

aplcatio
host

Figure 5. Message Flow When Update Requests
are Sent to a Non-primary Server

- 17 -

of transaction. From there on, Steps 4-7 of the above discussed algorithms

are followed. (See Figure 6)

As is true with any primary-site approach, this algorithm suffers

from the drawback that the primary server host is a potential bottleneck

in the system. The performance of the overall system depends very much on

the traffic at the primary host and the speed with which the host can pro-

cess requests.

Another common problem of primary-site algorithms is their low reli-

ability and low robustness due to their heavy dependence on a single host,

i.e., the primary. However the resiliency scheme overcomes that problem

by making sure that at least two copies of any transaction are present in

the network at any given time. Therefore, if the primary site fails, a

new primary site can be elected and the system can be recovered with the

help of other backup hosts.

5.1.2 Another Primary-Site Locking Technique

A primary-site locking algorithm proposed in [Men80] supports partially-

duplicated databases. The algorithm is robust in the face of site or com-

munication link failures.

In case the network is not partitioned, there is one centralized lock

controller (LC) at one of the sites. If the network is partitioned, then

there is an LC for each of the partitions. What we mean by partitioning

is the phenomenon where the nodes in the network are split into a number of

disjoint sets such that communication between any two nodes in different

sets is not possible. Furthermore, at every site, except the one where LC

resides, there is a local lock controller (LLC) which is responsible for

local actions. Another function of these LLCs is that each LLC can become

a LC if the original LC fails or is unreachable. This facility adds a

level of reliability to the algorithm which is not necessarily enjoyed by

all primary-site locking algorithms.

The site where LC resides has a global LOCK table which contains all

data items and the associated locks granted on those data items. On all

other sites, there are local LOCK tables for the data items local to their

sites.

In order to be aware of the other sites with which it can communi-

cate, each site maintains an up-list of sites assumed to be operational.

So, for each site, a logical component is defined as the subnetwork

- 18 -

forward request

forward aeknowle e

Figure 6. Message Flow Among Participating Servers

- 19-

which consists of all the nodes in the up-list of that site. Intuitively,

all the nodes of a logical component of a site (i.e., in its up-list) can

be reached by that site. We can now define the concept of locality of a

lock. A lock is considered local to a site if the data items associated

with the site reside on the sites in the logical component of that site.

This is an important requirement, since there is no way to act upon a lock

request if the data items that it is referring to are on nodes which can-

not be reached (either due tn site or communication link failures).

The algorithm employs two schemes called "two-phase locking" and "two-

phase commit" in granting lock requests, releasing lock requests and gener-

ating action messages (update, etc.). Two-phase locking means that each site

that intends to initiate a transaction first requests a lock for the related

data from the logical component and continues only when this request is granted.

Two-phase commit, on the other hand, means that the originating site first

sends the message. Upon learning that each of the destinations has receivedI

the message, it then asks them to carry out the action. The destinations,

on the other hand, wait for the second message to commit or to carry out the

necessary actions. This mechanism requires that there are two buffers at

each site. One is called the temporary buffer and the other is called the
final buffer. Furthermore, each site has an L-list to temporarily keep the

lock request messages before they are committed and an R-list to keep the

release request messages for the same purpose. The use of these buffers

and lists will become clearer in the course of discussing the algorithm.

In the following, the algorithm assumes no failures and, thus, no 'rir-

titioning. This is the simplest case and is sufficient to show how~

algorithm works. We note that in this case there is only one logical com-

ponent in the system.

Algorithm:

Step 1: [TRANSACTION INITIATION] An application program issues a lock
request (LR) to a logical component (1,C).

[STEPS 2-7 CONSTITUTE THE TWO-PHASE LOCKING PART. STEPS 2-5 CONSTITUTE
THE FIRST PHASE OF THE TWO-PHASE COMMIT PROTOCOL]

Step 2: [PRIMARY-SITE SYNCHRONIZATION) LC checks the lock table to see if
it is in conflict with any lock request already accepted and placed
in the lock table or the L-list. If it does conflict, some sche-
duling action is to be taken (which is not discussed in the paper
fMen8O]).

-20 -

Step 3: [LOCK REQUEST GRANTED OR REJECTED] If there is no conflict,
then LC checks if the lock is local. If it is not, then LC
rejects the lock request.

Step 4: [REQUEST GRANTED, NUMBERED AND BROADCAST] If the request is
not rejected, LC gives a sequence number to the lock request to
distinguish it from preceeding and subsequent requests. These
sequence numbers are global system-wide and are monotonically
increasing. LC then sends the lock request and its sequence
number to each of the sites where that data items referenced by
this transaction reside (called relevant sites). It also places
the lock request to its L-list.

Step 5: [RECEIVING SITES ACKNOWLEDGE] When the destination sites receive
the lock request, they place it in their L-lists and send a
message-accepted (MA) message back to the LC.

[Steps 6 & 7 CONSTITUTE THE SECOND PHASE OF TWO-PHASE COMMIT PROTOCOL FOR

HANDLING LOCK REQUESTS].

Step 6: [LC UPDATES LOCK TABLE AND ASKS OTHERS TO UPDATE] When LC gets
all the MA messages from all the destination sites, it appends
the lock request to its lock table, deletes it from its L-list
and sends a "confirm message" (CM) message to all the destination
sites. It also notifies the application program that the lock
request is granted.

Step 7: [UPDATE AND ACKNOWLEDGE BY OTHER SITES] On receipt of the CM
message, each site deletes the lock request from its L-list and
appends it to its lock table.

[THE TRANSACTION IS BEING EXECUTED IN STEPS 8-12. STEPS 8-10 AGAIN CON-
STITUTE THE FIRST PHASE OF THE TWO-PHASE COMMIT PROTOCOL]

Step 8: [TRANSACTION SENT TO LC] When the application program learns that
its lock request is granted, it ;.Ends a message request (MR) which
contains the transaction that is to be carried out, to LC.

Step 9: [TRANSACTION BROADCASTED BY LC] LC tags a sequence number to the
message and sends it to all the relevant sites. LC also places
the message in its temporary buffer.

Step 10: [DESTINATION-SITES ACKNOWLEDGE] When the sites receive the MR
message, they place it in their temporary buffers and send a MA
message back to the LC.

[STEPS 11 & 12 CONSTITUTE THE SECOND PHASE OF THE TWO-PHASE COMMIT PROTOCOL
FOR TRANSACTION EXECUTION]

Step 11: [LC COMMITS TRANSACTION] When LC gets all the MA messages from
the destination sites, it moves it from its temporary buffers to
its final buffer and sends a CM message to the destination sites.
It also notifies the application program that the transaction is
executed.

Step 12: [OTHER RELEVANT SITES COMMIT THE TRANSACTION] Each destination
site, when it gets the CM message, deletes the message from its
temporary buffer and places it in its final buffer. The sites are
executing the transactions from their final buffers. Therefore,
the inclusion of a message into a final buffer means that the
associated transaction is executed at that site.

-21-

(STEPS 13-17 RELEASE THE LOCKS THAT WERE OBTAINED; STEPS 13-15 ARE THE
FIRST PHASE)

Step 13: [LOCK-RELEASE SENT TO LC] The application program, upon learning

that the transaction is executed, sends a release request (RR)
to LC.

Step 14: [LC BROADCASTS RELEASE REQUEST] LC gives the release request a
sequence number, places it in its R-list and sends it to the
relevant sites.

Step 15: [DESTINATIONS ACKNOWLEDGE] Each site places the release request
in its R-list and sends a MA message back to the LC.

[STEPS 16 & 17 CONSTITUTE THE SECOND PHASE OF LOCK RELEASE]

Step 16: [LC RELEASES LOCKS] When LC gets all the MA messages, it deletes
the release request from its R-list, appends it to the list of
pending release requests and sends a CM message to the relevant
sites. It also notifies the application program to this effect.

Step 17: (DESTINATIONS RELEASE LOCKS] The sites, upon receiving the CM
message, delete the release request from their R-lists and append
it to their list of pending release requests.

Step 18: The algorithm terminates.

The above algorithm traces the execution of one transaction through

the system. As mentioned previously, we have not considered the cases of

network partitioning or failures. However, detailed algorithms for recovery

from a single-site failure and for partitioning are given in [Men8O].

5.1.3 Centralized Locking Technique

In [Gar78a], [Gar78b], [Gar78c] and [Gar78a], Garcia-Molina compared

various locking techniques. He proposed two variations of the primary-site

locking algorithm [Gar79a]. These are mainly aimed at removing the bottle-

neck that may occur at the primary site.

The algorithms employ a two-phase locking scheme and support fully du-

plicated databases. A separate algorithm, which we will not discuss here,

for partially duplicated databases is reported in (Gar79b]. It also uses

two-phase locking and two-phase commit mechanisms.

Below we will give the execution trace of one version of the algorithm,

called the Centralized Locking Algorithm With Wait-For Lists. We will then

point out the necessary modifications for the second version.

It is assumed that a list, known as the last list, is kept and maintained

at each site which shows the last transaction that locked the data item.

This last list is indexed on the data items (e.g., the entry Last(i) shows

the last transaction which updated data item i). Fach entry of this list

- 22 -

actually contains the sequence number of the transaction that has last

locked the data item. Furthermore, for each transaction, T, a walt-for

list, denoted wait-for(T), is constructed at the primary site which in-

cludes the sequence numbers of those transactions for which T has to wait

before executing. It simply contains those Last(i) entries for the data

items referenced by T.

A final point to note before presenting the algorithm is that each

site knows the sequence number of the last transaction it has executed.

Algorithm:

Step 1: [TRANSACTION INITIATION] A transaction T arrives at a site S
from a user.

Step 2: [LOCKS REQUESTED FROM PRIMARY SITE] Site S requests all the
necessary locks from the primary site.

Step 3: The primary site checks its lock tables. If all the requested
locks can be granted, goes to Step 5.

Step 4: [THE PRIMARY SITE QUEUES THE REQUEST IF CONFLICTS EXIST] It
puts the request in queues for data items which are already
locked by other transactions. Two points are important in this
queueing process: (1) There is a queue for each data item and
a transaction can wait in one queue at a time; and (2) all trans-
actions request their locks in some predefined order. Thus a
request moves from one queue to another in some predefined order
until all its lock requests can be granted.

Step 5: [NO CONFLICTS; PRIMARY SITE GRANTS THE LOCK REQUEST] When all
the locks of a transaction can be granted, a wait-for list for
that transaction is created, a sequence number is given to the
transaction and a grant message is sent back to site S which also
contains the wait-for list.

Step 6: [WAIT FOR TIMESTAMP ORDER AND EXECUTE] Site S waits until all the
transactions in the wait-for CT) list are executed. Then it exe-
cutes transaction T on the local copy of the databa ,e.

Step 7: [BROADCAST THE UPDATE MESSAGE] Site S sends a perform-update mes-
sage to all the sites and includes the wait-for(T) list in this
message.

Step 8: [OTHER SITES WAIT FOR TIMESTAMP ORDER AND EXECUTE] When each site
receives the perform-update message, they wait until they have
executed all the transactions in the wait-for(T) list. Then they
execute T.

Step 9: [LOCKS RELEASED] When the primary site receives the perform-
update message, it first performs Step 8. Then it releases all
the locks held by T and updates its LAST list.

Step 10: Algorithm terminates.

-23 -

The use of the wait-for list is to increase concurrency by allowing

transactions which do not conflict to be executed. However, it also brings

an overhead, especially at the primary site. The last list is presumably

quite large and may need to be stored on a secondary storage medium, thus

causing 1/0 overhead everytime it is accessed.

Another point which needs improvement is that once the requested

locks for a transaction are granted, the wait-for list for that transaction

is first sent to the site where the update transaction originates. Only

after it is executed at that site, is it sent to other sites in the network.

In other words, some of the sites in the network have to wait needlessly

before carrying out an update. This causes possible delays in the response

tmIn order to overcome the first problem and eliminate the I/O overhead

a second version of the algorithm, called Centralized Locking Algorithm

With Hole Lists is proposed. Instead of keeping the last and wait-for

lists, the primary site keeps a hole list which consists of the sequence

numbers of the update transactions in progress (i.e., locks obtained but

not yet released) at the primary site. The idea is that if the lock re-

quests of a transaction are granted, it cannot be in conflict with any

transaction in the hole list, since if it were, it could not have obtained

its locks in the first place.

We will now give the changes that need to be made in the above algo-

rithm to accomodate the hole lists.

(1) In Step 5, when the locks of a transaction are granted, its se-

quence number is placed in the hole list. The hole list, instead

of the wait-for list, is sent back to the originating node to-

gether with the grant message.

(2) In Step 6 and 8, each site checks the hole list to find out if

the only missing transaction numbers between the last transaction

they have executed and the present one they are asked to execute

are those in the hole list. If that is the case, they execute

the current transaction without waiting. Otherwise they wait.

(3) In Step 7, the hole list, Instead of the wait-for list, is sent

with the perform-update message.

(4) In Step 9, after the transaction is executed at the primary site

and the locks are released, the sequence number of that trans-

action is deleted from the hole list.

- 24 -

In the above algorithms it was assumed that the read-set of the

transactions were explicitly specified at the beginning. The case where

this is not assumed is also studied in [Gar79c]. In addition, the crash

recovery issues are studied in [Gar79dl.

5.1.4 Primary-Copy Locking Technique

The distributed version of the INGRES database system [He175],

[Sto76] employes P concurrency control scheme based on the primary-copy

locking concept. In the original paper [Sto78], the algorithm is classi-

fied as a primary-site locking technique. However, in accordance with our

classification proposed in Section 4, it should be considered as a primary-

copy locking technique. Not assuming that the database is fully duplicated

at every node, it is designed to work on partially duplicated databases.

Since INGRES is a relational database system [Cod7l], the duplicated

data consists of the tuples of relations in the database. Each set of

duplicated tuples of a relation is referred to as an object. Objects may

reside on a number of sites in the network.

Query handling facilities of INGRES decomposes a transaction into a

sequence of interactions. The idea is to enable the processing of inter-

actions concurrently and, thus, improve performance. The query decomposi-

tion aspects of INGRES is discussed in detail in [Won76] and [Eps78]. For

the purposes of our discussion in this section, it is sufficient to realize

that the transaction needs to be decomposed before execution.

Among the assumptions made of the system, the following are the most

important for our purposes.

(1) The algorithms do not attempt to prevent deadlocks. They rather

aim to detect and recover from them.

(2) Deadlock detection is not distributed. A distributed one could

be developed. Presently, deadlock detection is dedicated to one

site, called SNOOP. However, SNOOP can be dynamically chosen.

The concurrency control scheme of INGRES follows a two-phase locking

approach. Thus, before a transaction is executed, all the locks for all

the objects involved in that transaction have to be obtained from their

respective primary copies.

Furthermore, before an update is carried out, a retrieval request is

sent to all sites to determine the objects to be Involved in the update.

During this process, a deferred-update list is formed which contains the

-25 -

references of tll the changes that will be made to the objects. The

deferred-update list is useful in recovering from system crashes.

The choice of the primary copy for each object is done dynamically.

To describe how this is done, we need to introduce the use of up lists

and master/slave processes in ENGRES. An up list of a node records all

those nodes that the node assumes to be in operation. Since there is a

time lag between a site crash (or a communication failure) and the cur-

rency of this list, the up list for a site may be obsolete at timues.

When a user transaction originates at a site, a master process is

created at that site to coordinate the execution of the transaction.

The master process, then, may create slave processes at other sites

which assist the master for the execution of the transaction.

The copies of objects (i.e., sets of tuples) are known to each site

in the network. A linear ordering of these copies

is al so known to each site. Therefore, when a primary copy for an object

needs to be chosen, the master which will make the choice merely examines

its up list and chooses the copy of the object which is lowest in ordering

among those sites in its own up list.

We will now present an overview of the algorithm for concurrency con-

trol. For detailed study of the algorithms for master and slave process

operations as well as recovery and reconfiguration the reader should refer

to [Sto78l.

Algorithm:

Step 1: [TRANSACTION INITIATION; CREATION OF MASTER & SLAVE PROCESSES]
Upon receipt of a user transaction T, a master process is created
at the site where the transaction originates. The master then
creates slave processes at other sites.

Step 2: [PRIMARY COPY CHOSEN] The master examines its up list and chooses
a primary copy for each object involved in T.

Step 3: [OBTAIN LOCKS) The master obtains locks from the primary copies
of all the objects.

Step 4: The master supervises the decomposition of T.

Step 5: [MASTER ASKS SLAVES TO FORM DEFERRED UPDATE LISTS] The master
sends the sequence of interactions of T to slaves and waits for
the formation of the deferred update lists.

Step 6: [SLAVES FORM DEFERRED UPDATE LISTS] When all of the slaves have
formed their deferred update lists, they send ready messages to
the master.

-26 -

Step 7: [MASTER ASKS FOR COMMITTAL] The master then sends a commit
message to all the slaves and waits for done messages.

Step 8: [SLAVES COMMIT & ACKNOWLEDGE] Upon receipt of the commit
message, the slaves execute the interactions of the trans-
action. When its execution is completed, the slave sends a
done message to the master.

Step 9: [MASTER REPORTS TO USER AND SNOOP] When the master receives
all the done messages from the slaves, it sends a done message
to the user process and another done message to SNOOP. Thus,
SNOOP can monitor potential deadlocks.

Step 10: It terminates.

Two points need to be mentioned. First, if the master process fails

to get the ready messages from all the slaves (in Step 6), then it sends

the reset messages to the slaves, the user process and SNOOP. Since the

master has not yet committed the transaction, the master can roll it back.

An update of up list is necessary at this point. Second, if the master

process does not receive the done messages from some of the slaves (in

Step 9), then it queues the commit message for those sites and asks each

slave to reconfigure, and alter its up list. Since the master has not

received a done message, there is a potential danger of a failure which

would make the up list obsolete. Thus, the reconfiguration is necessary.

5.1.5 Distributed Locking Scheme

A distributed locking algorithm proposed in [Gar79e] can support

either fully redundant or partially redundant databases. It uses locking

at each site to ensure that the operation carried out at that site are con-

sistent. In addition, it makes use of timestamps to ensure mutual consis-

tency. The timestamps used by the system consist of time obtained from a

local clock concatenated with the local-site number.

The algorithm makes use of both the two-phase locking and the two-

phase commit principles. It requires that the locks are to be obtained

prior to any update; therefore, it is a two-phase locking scheme. Further-

more, in order for an update to be considered complete, a separate commit

message has to be issued after update message which causes effects of the

update to be permanent at all sites. Thus it is a two-phase commit scheme.

Each site keeps a local-lock table which contains the data items that

need to be locked for each operation (e.g., Read, Update, etc.) of a trans-

action. Thus, these lock tables are two-dimensional. In one dimension, the

lock tables consist of information regarding all the transactions being

-27 -

executed at that site. In the other dimension, the lock tables consist

of -- for each transaction -- a list of operations to be performed by

that transaction and data items to be locked for these operations.

Below, we give the basic algorithm. As usual we do not consider the

cases of node or link failure. These cases are considered in detail in

[Gar79e].

Algorithm:

Step 1: [TRANSACTION INITIATION] The transaction is generated and as-
signed a timestamp. We will refer to the site where the trans-
action is generated as the initiating site.

Step 2: [BROADCAST TINESTAMP AND LOCK TABLE] The initiating site broad-
casts the transaction's timestamp and its lock table to all the
sites. (Remember that the lock table of a transaction contain
the list of operations of that transaction and the data items
necessary for each of those operations).

Step 3: [LOCAL LOCKING BEGINS] When they receive this message, the sites
execute a local locking procedure as described in the following
Steps 4 to 7.

Step 4: [CONFLICT CHECKING AT LOCAL SITES] The site checks if the data
items referenced in this transaction have been locked by other
transactions. If they have, then goes to Step 5; Otherwise,
goes to Step 7.

step 5: [CONFLICT PRESENT; TIMESTAMP CHECKING] The site checks the
timestamp of the conflicting transaction with that of the present
transaction. if the conflicting transaction has a more recent
timestamp and if it is not already committed, then aborts the
conflicting transaction and goes to Step 6. (Aborting a trans-
action amounts to undoing the effects of that transaction and
broadcasting the abort message to all the sites). Otherwise,
aborts the current transaction and goes to Step 14.

Step 6: [REITERATE STEPS 4 & 5 TO FIND OUT IF THERE ARE MORE CONFLICTS]
Now one of the conflicting and more recent transactions has been
eliminated. We have to check if there are more conflicts.
Therefore, goes back to Step 4.

Step 7: [NO CONFLICTS; LOCK GRANTED BY LOCAL SITES] Since there are no
conflicts, the site sends a message to the initiating site indi-
cating that the lock request has been granted.

Step 8: [INITIATING SITE BROADCASTS UPDATE MESSAGES] When the initiating
site receives all the grant messages from all the other sites, it
broadcasts the update messages.

Step 9: (LOCAL UPDATING AT EACH SITE] Upon receipt of the update message,
each site performs the update on their local copies of the data-
base.

Step 10: [INITIATING SITE ASKS TO COMMhIT] Following the update messages,
the initiating site broadcasts commit messages to' all the sites.

- 28 -

Step 11: [LOCALS COMMIT AND ACKNOWLEDGE] Upon receipt of the message,
each site conmmits the transaction by marking an entry corres-
ponding to this transaction in a table of active transactions,
accordingly. It then sends an acknowledgment to the initiating
site. The setting of an entry in the table avoids the possible
aborting of the transaction in Step 5 of the algorithm.

Step 12: [INITIATING SITE MAKES LOG ENTRY; BROADCASTS DONE MESSAGE]
When the initiating site receives all the acknowledgments, it
appends the lock table of the transaction into its local journal
(to keep track of what has been done) and broadcasts a done mes-
sage to all the sites.

Step 13: [LOCAL SITES MAKE LOG ENTRIES AND RELEASE LOCKS] Every site,
when it receives the done message, appends the lock table of the
transaction to its local journal and releases the locks held by
this transaction.

Step 14: The Algorithm terminates.

The necessity of the commit and the done messages may not be clear at

the outset. Their necessity is discussed in detail in the paper [Gar79e].

Suff ice it to point out here that they are useful for handling site crashes

and transaction cancellation.

The advantage of this scheme is that no single site is given the re-

sponsibility of lock management, thus avoiding possible bottlenecks around

any single site. This helps to improve reliability and traffic congestion

problems around any of the sites. However, as is evident from the steps

of the algorithm, the volume of traffic between sites is quite extensive.

This may cause severe system degradations under heavy load conditions.

Especially, if the network does not support broadcasting, then each broad-

cast message has to be simulated by generating multiple point-to-point mes-

sages, which will considerably increase the communications overhead.

5.1.6 Pre-emptible Distributed-Locking Scheme

A distributed-locking algorithm similar to that of the one described

in Section 5.1.5 has been proposed in [Stu781. The similarity lies in the

fact that they both delegate the locking responsibility to the individual

sites. Furthermore, they both work on partially redundant databases, as

well as fully redundant ones. A distinction is made between the nodes where

the copies of the database are stored and the nodes where interaction with

the user takes place. The transactions originate at the later sites, but

the data management functions are carried out at the former. The termino-

logy used for these are D (data) sites and Q(query) sites, respectively.

729-

The transactions are timestamped which consist of the site number

concatenated with a time obtained from the local timer. The relation-

ships of "younger" and "older" are defined for transactions. A trans-

action Ti Is older than T2 if the timestamp of TI is smaller than the

timestamp of T2. Younger relations are defined conversely.

The algorithm is based on the premise that data items are pre-

emptible. In other words, under certain conditions it is possible to

allow a data item which is in the process of being locked by a trans-

action to be locked by another transaction. In order to discuss when

and how this may be done, we first mention the states that a transaction

goes through.

The algorithm employs two-phase locking. Thus, locks for data items

have to be obtained before the data items are accessed. A transaction

which is in the process of obtaining its locks is said to be in the locking

state. As soon as the transaction obtains its locks and starts accessing

data, it is in working state. Between the time where a site grants a lock

request and the time that it receives a data access request for that trans-

action, the transaction is said to be in the unknown state because the pre-

sent site has no knowledge of what is going on at other sites. A data item

can be pre-empted from a transaction if the transaction is in the locking

state and is younger. A final state that a transaction may be in is the

checking state. A transaction is put in this state if it is in the unknown

state and if another transaction wants to pre-empt those data items that

have been locked by the transaction. The state transition diagram is given

in Figure 7 and the algorithm for the execution of a transaction is given

below.

Algorithm:

Step 1: [TRANSACTION INITIATION; IN LOCKING STATE] Transaction TI is
generated and timestamped at a Q node. The Q node, then, puts
TI in a locking state.

Step 2: [LOCK REQUEST BROADCASTED] A lock request, indicating the data
items that need to be locked, is sent to each D node where those
data items may reside.

Step 3: [LOCAL CONFLICT CHECKTmrI Each D node checks if any of the data
items has been locked. If iocked, goes to Step 4; Otherwise,
goes to Step 7.

Step 4: [CONFLICT PRESENT; CHECK TIMESTAMPS] Since TI is conflicting
with another request (say, T2), Tl's timestamp is compared with

-30-

LOCKING -

(Transition due to CE Npre-emption) CHECKING

WORKING -

Figure 7. State Transitions

in Pre-emptible Locking Scheme

-31-

T2's timestamp. If T2's timestamp is older, then the lock cannot
be pre-empted. Therefore, goes to Step 14 where Ti will be placed
on a waiting list.

Step 5: [CHECK CONFLICTING TRANSACTION'S STATE] Checks what state T2 is
in. If it is in a locking state, goes to Step 6; if it is in a
working state, goes to Step 14; if it is in an unknown state,
goes to Step 12.

Step 6: [CONFLICTING TRANSACTION IN LOCKING STATE] It pre-empts the locks
held by T2, puts T2 on a waiting list and sends a lock-request-not-
granted message to the Q node where T2 had initiated.

Step 7: [LOCK DATA ITEMS FOR TRANSACTION) The D node locks the data items
requested by Ti and sends a locking-completed message to the ini-
tiating Q node and puts Tl in an unknown state.

Step 8: [TRANSACTION PUT IN WORKING STATE] When the initiating Q node re-
ceives the locking-completed messages from all the D nodes which
it had sent the lock request message, it puts the transaction into
a working state and sends data-access messages to the D nodes.

Step 9: [REQUESTED DATA ITEMS ARE READ AND SENT] When the D nodes receive
the data-access messages, they put the transaction into a working
state and send requested data items to the Q node.

Step 10: [PERFORM UPDATE; ASK TO RELEASE LOCKS] At this stage, the Q node
is ready to carry out the operations involved in the transaction.
This may require further communication with the D nodes since it
involves updating databases at D nodes. When it is complete, it
sends a lock-release request to the D nodes.

Step 11': [LOCKS RELEASED] The D nodes release all the locks for that request
and pick the oldest transaction from the waiting list. Then goes
to Step 3 to work on that transaction now.

Step 12: [CONFLICTING TRANSACTION IN UNKNOWN STATE; STEPS 12 and 13 HANDLE
THAT TRANSACTION] In this case, Tl is made to wait. The state of
T2 is changed to checking and a message is sent to the Q node
where T2 had originated, stating that if transaction T2 is still
in its locking state, disregard the locking-completed message sent
by this site and repeat the locking request for T2. If T2 is not
in a locking state, send a working message. When the Q node for
T2 receives this message, it checks the status of T2 in its own
tables, and responds accordingly.

Step 13: If the data node gets a lock-request-renewal message, then it puts
T2 in a locking state, and goes back to Step 7. If, however, it
gets a working message, then it puts T2 into a working state.
Then continues with Step 14.

Step 14: [CONFLICTING TRANSACTION IN WORKING STATE] Puts Ti into a waiting
list.

Step 15: Algorithm terminates.

-32 -

5.1.7 Migration Checking Scheme

Several locking-based concurrency control techniques are discussed in

(Ros78] which resolve conflicts by either causing one of the conflicting

requests to wait or to restart. We first introduce certain concepts as

they apply to them.

Each request is given a unique number when it is initiated. The re-

quest with a smaller number is called the older request whereas the one

with a greater number is called the younger request.

At each site, there is a local concurrency control which handles the

conflicts that occur at that site. The requests travel from one site to the

next; as they travel, they are acted upon by local concurrency controllers.

A site is said to be active if the request travels to the site. The site is

considered to be inactive if the request has visited the site.

The active site can stop the running of a process by either aborting or

terminating the process. Aborting a process means that the request of the

process is stopped at the active site and all the inactive sites that the

request has visited are informed to that effect. To accompolish this, the

active site sends a rollback message to all the inactive sites. Upon receipt

of the rollback message, each site undoes the effect of the request, i.e.,

each site brings the database to its original state before the (aborted) re-

quest visited that site. Terminating a process means that the process is

stopped at the active site due to successful completion, causing its effects

to be made permanent.

conflict over the same data item if the following two conditions are both

true:

(1) One of the reque-;cs is a write request,

(2) The site where the common data item resides has not yet received

a termination or a roolback message for either of the requests.

When a process is found to be in conflict with another, two actions are

taken:

(1) WATT- The requesting process is made to wait until the process(es)

with which it conflicts is either terminated or aborted.

(2) RESTART-Either the requesting process, or one of the processes

that it is in conflict with is restarted. To restart a process,

we first abort the process (as described above) and then start it

again.

The procedure of restarting can he done in either one of the following

- 33 -

two ways:

(1) DIE - The requesting process is restarted.

(2) WOUND - The requesting process is said to "wound" the other pro-

cess that it conflicts with. Therefore, the other process is

restarted.

Based on these alternative courses of action, two basic algorithms are

developed, called WAIT-DIE and WOUND-WAIT. Their difference is as follows.

Assume that a process P1 issues a request that is in conflict with the pre-

vious request of another process P2. Then, in the WAIT-DIE system, Pl

WAITs if the number assigned to it is smaller (i.e., older) than the number

assigned to P2. Otherwise, DIEs (because it is younger). In the WOUND-WAIT

system, however, P1 WAITs if it is younger. Otherwise, P1 WOUNDs P2 causing

P2 to restart. In Figure 8, we summarize the outcomes of these two approaches.

The major drawback of this approach is that it can cause many processes

to restart and that the system overhead may become unbearable. Furthermore,

some (or most) of these restarts may not be necessary. Since local concur-

rency controllers can issue restarts without knowing what is going on else-

where in the network, they tend to issue unnecessary restarts. This problem

is addressed in [Ros78] and alternative algorithms based on these primitives

which aim to reduce the number of restarts have also been proposed. The

reader should consult [Ros78] for further details.

5.1.8 Locking-Based Ring Scheme

This scheme [E1l77a], [El177b] is a site-locking approach where all

of the sites execute one transaction at a time. It assumes that there is

a ring connection among the nodes in the network (e.g., in Figure 9) and that

the database is fully duplicated (i.e., copies of the same database are pre-

sent at some of the connected nodes, known as database nodes, which are

connected in a ring topology). Given this topology, the algorithm requires

that a node which initiates a transaction first sends a synchronization mes-

sage through the network and then follows it by the actual update request.

Both the synchronization and the update messages travel around the ring and

their return to the originating node is considered to be a positive acknow-

ledgment. Therefore, when the synchronization message comes back to the

initiating node, it means that each node is ready to do the update, and when

the update message comes back it means that each node has carried out the up-

date and the transaction is completed successfully.

- 34 -

requestor existing request

older requester waits continues

younger requester restarts continues

(a) WAIT-DIE Approach

requestor existing request

older request continues restarts

younger request waits continues

(b) WOUND-WAIT Approach

Figure 8. Summary of WATT-T)TE & WOUND-WAIT Schemes

-35-

94

Figure 9. Five-Node Ring Structure

3. . .4

36 -

It is assumed that at each database node there is a process called

the database manager (DM), which executes the synchronization protocols.

An internal update request (TNT REQ) ig defined as a message initiated by

a user process and sent to Its local database manager. An external update

request (EXT REQ), on the other hand, is a message that is sent by a node

to another node. Thus, all update requests are assumed to be initiated

by user processes local to a database node. Each node attaches a priority

to the request, before sending it as an EXT REQ. To prevent two updates

to take place at the same time, the lower-priority request is saved at the

node where the higher-priority request is initiated.

At any given time, a database manager (DM) at a node can be in one of

the following four states: idle, active, passive and update. The next

action that the database manager at a node takes depends on its current

state and the received message.

The idle state of a DM indicates that the DM at the node has not re-

ceived any messages and is not doing anything. The active state of a DM

spans the time when the DM first initiates a transaction until the trans-

action is concluded. A DM is in passive state if the DM is waiting for its

turn to work on a transaction initiated by another DM. Finally, the update

state is entered during the period a DM is actually performing on update.

There are four messages for the nodes: TNT REQ, EXT REQ, UPD or UPDF.

UPD and UPDF are update messages. In particular, UPDF initiated by a node

indicates that the node does not have any more update messages besides the

one currently being saved at the node. If the DM is in idle state, it can

only receive TNT REQ or EXT REQ messages. If it is in active or passive

state it can receive EXT REQ, UPD or UPDF. If it is in update state, it

cannot receive any message.

Algorithm:

(To facilitate the understanding of the algorithm, the reader should refer

to Figure 10 while tollowing through the steps of the algorithm. This

figure is a modified version of the one used in [El177a] and [Ell77b]).

Step 1: (IDLE STATE; TRANSACTION INITIATION; SEND SYNCHRONIZATION
MESSAGE] In order to initiate a transaction, DM at that node
must be in idle state. Upon receipt of an TNT REQ indicating
that a user process on this node wants to initiate an update
transaction, DM sends an EXT REQ for synchronization to th next
downstream node. It then goes into active state (i.e., St,- 4).

-37 -

idle

ITRGStep I EXT REG

EXT REG EXT AEG

active or passive
UPDF tep 7 EXT RE 0

Step4 hih rtransmit UPD;
priority? update Leiun EXT iiEQ

ETRGupdate 2 to passive

priority? <REG

I EQ? to aclive to active L

tpdriit ~ ina M~sm Ste Step V
(UPda. ,) u;;Jate (UPD)5 Y

updte PO Step Step

update U P t) F

priority? te 1
to active

trpitt bpe:u
transit beundt

Step 15 VL-
update 1

to if~t tasi

upae Step 1 saved 14E G. -Q

comp~leted

to active to passive
etep 4 Step 7

to the next node

~ protocol

Figure 10. All Possible States and Steps of the Algorithmn

- 38 -

Step 2: Repeat steps 3 through 7 for each of the nodes in the ring until
the equality condition in Step 4 holds.

Step 3: [EACH SITE CHECKS ITS OWN STATE] Based on the state DM is in,
it takes one of the following actions:
a) State = idle; upon receipt of the EXT REQ, it immediately

retransmits the message to the next node. This indicates
that DM is free to carry out an update. It then goes to
Step 7.

b) State = active; goes to Step 4.
c) State = passive; goes to Step 7.

Step 4: [SITE IN ACTIVE STATE; CHECK PRIORITIES OF INCOMING AND PREVIOUS
SYNCHRONIZATION MESSAGES] (Remember that DM can be in the active
state only if it has previously initiated an update request).
Upon receipt of an EXT REQ, it compares the priority of the in-
coming REQ with the one it had previously sent out. If the in-
coming REQ is of higher priority, goes to Step 5. If it is of
lower priority, goes to Step 6. If they are of equal priority,
goes to Step 8.

Step 5: [INCOMING SYNCHRONIZATION MESSAGE OF HIGHER PRIORITY; RETRANSMIT]
Since the incoming EXT REQ is of higher priority than the one sent
out by this DM, it is retransmitted to the next node. Then, DM
goes to Step 4 and stays in active state.

Step 6: [INCOMING SYNCHRONIZATION MESSAGE OF LOWER PRIORITY; HOLD IT]
Since the incoming request is of lower priority than the one this
DM sent out, the request initiated by this node should be handled
first. Therefore, DM saves the incoming EXT REQ and goes to
Step 4, staying in active state.

Step 7: [SITE IN PASSIVE STATE; RETRANSMIT SYNCHRONIZATION MESSAGE]
(Remember that I)M enters passive state if it gets an EXT REQ while
in Idle state). Upon receipt of an EXT REO, while in this state,
DM retransmits the EXT REQ to the next node and stays in Step 7.

Step 8: [SYSTFE SYNCHRONIZED; SEND UPDATE MESSAGE] (Remember that the
algorithm comes to this step if DM gets an EXT REQ while in active

state and the priority of the Incoming REQ is equal to the priority
of the RFQ that this DM previously sent out). This means that the
synchronization message finished its travel along the ring and came
back to its sender. This, in turn, implies that DM can send out
its update request (UPD or UPDF). DM now checks if it had saved
any requests (because of the condition in Step 6). If it has not,
it means that DM has only one update request to send out. There-
fore, it transmits a UPDF. Otherwise, It transmits a UPD. In
either case, it then goes to Step 15.

Step 9: Repeat steps 10 through 15 for all the nodes in the ring to carry
out the update until the condition in Step 14 holds.

Step 10: [SITE CHECKS ITS OWN STATE] Based on the state the DM is in, it
takes one of the following actions:
a) state = passive; goes to Step 11.
b) state = active; goes to Step 14.

Step 11: [SITE IN PASSIVE STATE; RETRANSMIT UPDATE MESSAGE] If IM receives
a UPD or UPDF while in the passive state, it means that It is ready

-39-

to carry out the update. However, it first retransmnits the
request to the next node.

Step 12: [UPDATE STATE 2; UPDATE EXECUTED] DM executes the updates on
its local copy.

Step 13: [UPDATE COMPLETED; MORE UPDATES IN THE SYSTEM?] When the up-
date is completed, it checks to see if there are other update
requests in the system. If there are, then enters the passive
state (Step 7). If there are not, goes back to Step I and en-
ters idle state.

Step 14: [SITE IN ACTIVE STATE; CHECK(PROPERTIES OF INCOMING & PREVIOUSLY
SENT UPDATES] If DM receives a UPD or UPDF while in the active
state, it first checks to see if the priority of the incoming
request is equal to the priority of the update request it had
previously sent. If they are not equal, goes to Step 15. If
they are, goes to Step 16.

Step 15: [PRIORITIES NOT EQUAL; UPDATE STATE 1; UPDATE LOCALLY EXECUTED]
DM executes the update on its own local copy. When it is com-
pleted, goes back to Step 4 and stays in active state.

Step 16: [PRIORITIES EQUAL; UPDATE EXECUTION COMPLETED) If the update
requests are of the same priority, it means that the UPO or UPDF
sent by this DM has completed its travel around the ring and up-
dates of all the copies are done. Thus the execution of the up-
date initiated at this node is terminated. DM then checks if it
has previously saved any requests (of lower priority). If it has
not, then goes to Step 1 and enters idle state. If it has, then
retransmits the saved REQ, unsaves it and enters passive state
(Step 7).

The algorithm, as we have stated above, traces the execution of one

update request. It has the following disadvantages:

(1) Before updating, the algorithm essentially obtains a lock for

the entire system (i.e., locks all the network). This is due to

the fact that each node can carry out only one active update re-

quest at any given time. This causes the update transactions to

be executed serially, in the same order at all the sites, even

if the transactions do not conflict among themselves.

(2) To carry out an update, two messages are used -one for synchroni-

zation and the other for actual update.

(3) It presupposes a ring structure where every node should be able to

communicate with its neighbors.

(4) As a corollary of the previous two points, the algorithm is very

costly both in terms of the time spent to carry out an update and

the message traffic that is generated.

(5) Since all the messages are to propogate serially around the ring,

-40-

it is not robust in case of node (or link) failures. The re-

liability and recovery issues are not addressed in this proposal.

5.1.9 Posted Update Scheme

Another algorithm which locks the entire system [Rah79] employs a

seializing technique among the sites. The algorithm is designed to work on

partially redundant databases.

At each site there is a queue where the update transactions are kept

and processed on a FIFO basis. The algorithm essentially manages the up-

date transaction as they are added to the queues.

The sites in the system are dynamically named as master and slave. A

site is master for a given update transaction, UT, if UT originates at that

site. This is denoted as master(UT). A site is slave, slave(UT), if it is

working on an update transaction generated at another site.

A linear ordering is imposed upon the sites and this ordering also

serves as the priority of each site. This enables priority arbitration

among transactions which are initiated at different sites at the same time.

Furthermore, there is a counter at each site which is incremented between

updates generated at that node. This helps to resolve potential conflicts

among the transactions that originate at the same site.

Each update transaction is timestamped with the site number and the

local counter value. This provides the system-wide uniqueness of each

update transaction.

Based on these definitions the basic algorithm which does not handle

failure conditions is given below. The failure and recover mechanisms are

not discussed in [Rah79].

Algorithm:

Step 1: [TRANSACTION INITIATION] An update transaction Ti originates at
a site which becomes master(Ti).

Step 2: [DETERMINE RELEVANT SITES] Master(Ti) determines which sites keep
the data items referenced by this transaction.

Step 3: [MASTER ASKS RELEVANT SITES TO GET READY] Master(Ti) sends a get-
queue-ready message to all those sites asking them to ready their
queues for addition of a new update. Then, master(Ti) waits for
response (goes to Step 10).

Step 4: [CHECK IF QUEUE ALREADY RFADIED; TF NOT ACKNOWLEDGE GET READY
REQUEST) At the sites where this message is received, slave(Ti)
processes are invoked. Each slave(Ti) checks its queue to deter-

-41-

mine if it had been readied for some other update. If it has
been, then goes to Step 5. Otherwise, slave(Ti) sends a ready
message back to master(Ti).

Step 5: [QUEUE ALREADY READIED; CHECK PRIORITIES] If the queue has
been readied for another update transaction, say Tj, then it
compares the priorities of Ti and Tj. If the priority of TJ is
greater than the priority of Ti, goes to Step 6; otherwise,
goes to Step 7.

Step 6: [PREVIOUS TRANSACTION IS OF HIGHER PRIORITY; REJECT NEW ONE]
Since the queue has already been readied for another request
(Tj) of higher priority, slave(Ti) sends a not-ready message to
master(Ti).

Step 7: [PREVIOUS TRANSACTION IS OF LOWER PRIORITY; INFORM ITS MASTER
THAT THE SITE WANTS TO CHANGE THE READY ACKNOWLEDGMENT TO NOT
READY] Since the transaction for which the queue has been
readied (Tj) if of lower priority, slave(Ti) sends a message to
master(Tj) requesting to change its previous ready message for
transaction Tj to not-ready.

Step 8: [MASTER REPLIES ACCORDING TO THE STATUS OF THAT TRANSACTION]
Master(Tj) checks its own status. If it has already asked the
slaves to carry out the update (i.e., sent the queue-update
message in Step 11), then it replies not-ok. Otherwise, it
replies ok.

Step 9: [IF PREVIOUS TRANSACTION CANNOT BE ABORTED, REJECT NEW ONE;
OTHERWISE ACCEPT AND ACKNOWLEDGE NEW TRANSACTION] Slave(Ti)
waits for master(Tj)'s response. If the response is ok, then
sends a ready message to master(Ti). Otherwise, sends a not-
ready message.

Step 10: [MASTER WAITS FOR ACKS FROM ALL SLAVES] Master(Ti) waits until
it receives ready messages from all the sites to which it has
sent get-queue-ready message. If any one slave(Ti) replies not-
ready, goes to Step 11; otherwise, skips to Step 12.

Step 11: [SOME SLAVES CANNOT CARRY OUT THE UPDATE; GIVEUP] Master(Ti)
sends a giveup message to all the slaves asking them to termi-
nate working on transaction Ti. Then skips to Step 15.

Step 12: [ALL POSITIVELY ACKNOWLEDGED; MASTER ASKS SLAVES TO QUEUE THE
UPDATE] When all the slaves reply ready, Master(Ti) sends a
queue-update message together with the update transaction to all
the slaves. Then, goes to Step 13 to wait for responses.

Step 13: [EACH SLAVE QUEUES UPDATE AND ACKNOWLEDGES] When each slave re-
ceives queue-update message, it puts the update transaction in
its queue and sends an update-queued message to master(Ti).

Step 14: [MASTER WAITS FOR ACK FROM EACH STAVE] Master(Ti) waits until
it receives update-queued messages from all the slaves. When
it gets all the messages, goes to Step 15.

Step 15: Algorithm terminates.

A final word about the algorithm is that it manages the insertion of

update transactions into the queues at each site. Once that is accom-

-42-

plished, each site works autonomously on the transactions In Its qucuUC in~

FIFO pattern. This enables each site to work at its owe pace dependig on

local workload. However, as the ring algorithm discussed in the previous

section, this scheme also locks all those sites where the relevant data

resides in order to carry out a single transaction. This, of course,

causes serial execution of all transactions at all these sites regardless

of whether the transactions conflict or not. Its advantage over the pre-

vious scheme is that more concurrency can be achieved since it supports

partially duplicated databases. The sites which do not participate in an

update can execute other transactions concurrently. Nevertheless, in the

case where this scheme is used to support fully duplicated databases, the

entire system is locked.

5.1.10 Global Locking Scheme

The algorithm described in [Ram79] is another global locking scheme

where the sites individually decide whether to accept or to reject a trans-

action. Nevertheless, the entire system is locked once the transaction is

accepted. The algorithm works on~ partially duplicated databases and assumes

the following:

(1) There are logical clocks at each site which are closely synchro-

nized.

(2) The topology of the network does not change throughout the execu-

tion of an update transaction.

(3) A tree topology among the sites is assumed. In other words, for a

network without such a topology, the computation of a spanning

tree for the network starting with some arbitrary node is required.

(4) Message transmission delays between any two sites is one or more

clock cycles. For simplicity, we will assume in the following

discussion that the delays are of a single clock cycle.

At a given time, the sites in the network can be in one of the following

four states: available, prepared, counting and update. In available state

a site can initiate a transaction or accept a transaction for execution, fol-

lowing which the site enters the prepared state. In this state, a trans-

action may be preempted by a higher priority one. Counting is the state

where a site waits until every site gets the update message. Finally, update

Is the state where the effects of the update transaction are made permanent.

The state transitions are depicted In Figure 11.

-43-

Figure 11. State Transitions in the

Global 1ocking, Scheme

- 44 -

The scheme employs a variation of the two-phase commit protocol.

Instead of sending a separate commit message following the update, the

sites gather information on how long it would take a message to reach the

farthest site in the network. This information is used by each site to

determine the time that the transaction reaches the farthest site so that

all of the sites can enter the update state and carry out the update sim-

ultaneously.

Algorithm:

Step 1: [TRANSACTION INITIATION] A site, say n(o), receives a local
update. A priority is assigned to the update which consists
of a unique site number and a time value obtained from a local
clock. Site n(o) enters prepared state and sends a request
message to its neighbors. Then goes to Step 7 and waits for
acknowledgment there.

Step 2: [STEPS 2-4 ARE REPEATED FOR EACH NON-LEAF SITE] Each site,
n(i), upon the receipt of the request message, checks its state.
If it is in prepared state, goes to Step 3; if it is in avail-
able state, goes to Step 4. If it is in counting or update
states, it simply ignores the new request and stays in its own
state.

Step 3: [SITE IN PREPARED STATE; COMPARE PRIORITIES] Since the site
is in prepared state, it should have received another request
message. Compares the priorities of the current and the pre-
vious request messages. If the current request is of lower
priority, reject it and stays in the prepared state. If the
current update is of higher priority, preempts the previous one
and notifies its originator. Sets sender (i)=n(j) where n(j) is
the site from which the new request message was received, and
sends the request message to all its neighbors except n(j). Then
goes to Step 6 to wair for acknowledgment messages.

Step 4: [SITE IN AVAILABLE STATE; PROPOGATE REQUEST] Site enters pre-
pared state and sends the request message to all its neighbors
except the one from which the message was originated. Also sets
sender (i)=n(j). Then goes to Step 6 and waits for acknowledgment

messages there.

Step 5: [HANDLE THE ILEAF SITES] Upon the receipt of the request message,
a leaf site, n(j), enters the prepared state and sends to the
sender site an acknowledgment message together with a counter T(j)
which is set to 0. Then goes to Step q and waits for tile update
message there.

Step 6: [SITES WATT FOR ACKNOWLEDGMENT; THIS STEP IS REPEATED FOR All. THE
SITES EXCEPT n(o)] When node n(i) receives the acknowledgment
from all of its neighbors (except sender(l)), it sends sender(i)
an acknowledgment message containing a counter T(i)=T(k)+I, where
T(k) is tie counter of the last received acknowledgment message
from the neighbors. Then goes to Step 8 and waits for the update

message there.

-45-

Step 7: [ORIGINAL SITE (n(o)) RECEIVED THE ACKNOWLEDGMENTS; START
UPDATE] The originating site is now ready to synchronize.
Recall that T(o) indicates the maximum distance between n(o)
and any other node (called the radius) in the network.

Node n(o) enters counting state and sends an update message to
all its neighbors containing the update values and a new counter
TP(o)=T(o)+l. Then goes to Step 10.

Step 8: [THIS STEP IS REPEATED FOR ALL OTHER NON-LEAF NODES; COUNTINC
STATE - UPDATE MESSAGE IS HANDLED] When a node, n(i), receives
the update message from another node n(j), it enters the counting
state, saves the update values, sets its counter TP(i)=TP(j)-l
and sends the update message and the new counter TP(j) to all
its neighbors except n(j). Then goes to Step 10.

Step 9: [HANDLE UPDATE MESSAGE AT LEAF SITES] When a leaf site receives
an update message, it enters the counting state, saves the up-
date values and computes its own counter.

Step 10: [UPDATE STATE - MAKE UPDATE PERMANENT; ALL SITES PERFORM THIS
STEP] With its counter TP(i), each site starts counting down with
the clock pulse. Recall that the transmission between any two
sites for any message was assumed to take a unit amount of time.
Thus, when the counter reaches zero, the update message must have
reached the farthest site in the network. Remember that all the
counters at all sites reach zero simultaneously. When this oc-
curs, each node enters the update state and performs the update.

Step 11: Sites enter the available state and the algorithm terminates.

In case the assumption of a single unit of message transmission delays

is relaxed in favor of a case where the delays may be multiple units, the

above algorithm must be modified accordingly. This will, no doubt, make the

scheme more realistic; however, it implies knowledge of transmission delays

between all pairs of connected sites for all messages that may be transmitted

between them. This is a difficult requirement.

Another point of caution is that the mechanism of preempting a previo ks

request and notifying its originator (in Step 3) is not as simple as the

algorithm implies. For example, the originator may be in the middle of pro-

cessing the 'preempted' transaction, i.e., may already be in counting state.

Finally, a slightly improved version, which was not reported here, is

also discussed in [Ram79]. The improved algorithm reduces the synchroniza-

tion time by performing the two operations (of finding the radius (see

Step 7) and of sending the update message) as simultaneous as possible.

5.1.11 System-Wide Locking Scheme

Another algorithm based on locking the entire system for each update

is reported in [Seg791. This algorithm works on fully duplicated databases

-46-

and each copy of the database has a version number. These version numbers

are used to handle the cases of update messages which may arrive at a site

out of sequence.

The process at each site which manages the database is called a

monitor. A monitor can be in one of the three states: (1) administrator,

(2) fellow, and (3) postulant. A monitor is in the administrator state

if it is about to initiate an update. This is the privileged state and

only one monitor can be in the administrator state at a time. This avoids

deadlocks, but causes a system-wide lockout of other update requests.

A monitor is in a fellow state if it is performing updates initiated

by another monitor -- the one in the administrator state.

Finally, a monitor can be in a postulant state if it is in a fellow

state and wants to initiate an update. This is actually an intermediate

state for a monitor which is passing from the fellow to the administrator

state.

It should be noted that a monitor may be in states other than these

during failure and recovery periods. However we will not discuss those

cases here.

The database copies at each node can also be in one of two states:

(1) stable if no update is currently being processed on the copy, and

(2) unstable if an update is going on. The unstable state is actually a

local locking state to prevent other update requests to originate at the

same site while an update is in progress.

Algorithm:

Step 1: [UPDATE INITIATION] The transaction initiates an update request
and sends it to a monitor.

Step 2: [MONITOR CHECKS STATE] The monitor checks its own state. If it
is in an administrator state, goes to Step 7.

Step 3: [THE FELLOW STATE: ASK ADMINISTRATOR FOR PERMTSSION TO BECOME

THE NEW ADMINISTRATOR] If it is in a fellow state, it asks the
monitor in the administrator state for permission to become the
administrator. It then places itself into a postulant state.

Step 4: [DEMAND ACCEPTED BY THE CURRENT ADMINISTRATOR] When the monitor
in the administrator state accepts the demand, it puts itself
into the fellow state and informs the requesting monitor.

Step 5: [THE '-1I ADMINISTRATOR INFORMS THE SYSTEM OF STATUS CHANCE] The
requestiag monitor (i.e., the one in postulent state) broadcasts
a message to all the monitors in the system informing them that
it is becoming the administrator.

-47-

Step 7: [CHECK LOCAL DATABASE COPY] The administrator checks its local
copy of the database. If it is in unstable state, then the up-
date cannot be executed; goes to Step 8. Otherwise, goes to
Step 9.

Step 8: [LOCAL DATABASE COPY IN UNSTABLE STATE; CANNOT PROCESS VPDAHi,
QUEUE IT] Puts the request in a queue and waits until the copy
becomes stable again. When the database copy becomes stable,
it picks the first request in the queue and continues with
Step 9.

Step 9: [LOCAL DATABASE COPY IN STABLE STATE; PERFORM UPDATE ON A TEMPO)-
RARY COPY AND GIVE IT A NEW VERSION NUMBER] The administrator
monitor performs the update on a second (backup) copy of the
database and gives it a new version number. Note that the ef-
fects of the update are not yet reflected in the original copy of
the database.

Step 10: [INFORM ALL MONITORS OF THE UPDATE; SET LOCAL DATABASE COPY IN
UNSTABLE STATE] The administrator monitor sends the new version
of its copy and the new version number to all the monitors and
sets the state of its local copy to be unstable.

Step 11: [MONITORS COMPARE VERSION NUMBERS] When each of the fellow moni-
tors receives the new version, it checks thu number of the new
version against that of its own local copy. If the number of the
new version is greater than its own local copy, then everything
is fine and goes to Step 13.

Step 12: [INCOMING UPDATE OLDER; DO NOT ACKNOWLEDGE] If the number of the
new version is smaller than the number of the local copy, then it
means that this is an update request which is out of sequence and
obsolete. So the fellow monitor does not send any acknowledgment
and stays in the fellow state.

Step 13: [INCOMING UPDATE YOUNGER; ACKNOWLEDGE AND PUT LOCAL DATABASE COPY
IN UNSTABLE STATE] Since the updated version received by the fel-
low monitor is not an obsolete copy, the fellow monitor sends an
acknowledgment back to the administrator monitor indicating it is
ready to carry out the update and puts its own copy of the database
in unstable state.

Step 14: [ADMINISTRATOR GETS A MAJORITY OF ACKNOWLEDGMENTS] The adminis-
trator waits until it receives N/2 acknowledgments in a given time
period. If it doesn't receive enough acknowledgments, then a
majority of the monitors are not ready to carry out the update.
So, the update request is rejected and it goes to Step 17.

Step 15: [ADMINISTRATOR ASKS ALL MONITORS TO PERFORM THE UPDATE; IT PER-
FORMS LOCALLY AND PUTS THE LOCAL COPY IN THE STABLE STATE] If a

majority of the monitors acknowledges, then the administrator
monitor sends an order to all the fellow monitors to execute the
update. It executes it on its local copy and puts its copy in
the stable state.

Step 16: [FELLOW MONITORS PERFORM UPDATES AND PUT LOCAL COPIES IN STABLE
STATE] Upon receipt of this order, the fellow monitors execute
tLe update and put their own copies in the stable state.

Step 17: [SEE IF ANY TRANSACTION QUEUED; IF SO, CHOOSE THE FIRST ONE TO

liL

-48 -

PROCESS] The administrator checks its queue to find out if there
is any transaction waiting to be executed. If there is, picks
the first one and goes back to Step 9.

Step 1~8: The algorithm terminates.

As is clear from the algorithm, the whole system Is actually locked

out for updates while an update is in progress. Even if they do not access

the same data items, multiple updates cannot be executed concurrently. The

authors indicate that they could manage simultaneous requests which don't

work on commnon 'objects', but the algorithm, as it stands, cannot handle

these cases and the necessary changes do not seem trivial.

5.1.12 Hierarchical Site-Locking Scheme

A site-locking scheme which supports partially duplicated relational

database systems is reported in [Yam79]. It is assumed that the database is

partitioned into fragments. Each fragment consists of a set of tuples of a

relation and it is these fragments that are distributed over the nodes of

the network. At each site where a fragment resides, there is a process re-

sponsible for managing that fragment. These are called fragment processes.

The set of fragment processes that have the same tuples in their fragments is

called a closed update group. Thus, an update which effects one fragment in

a closed update group, effects all the fragments in the same group.

One of the fragment processes in each closed update group is called the

master. All the others in the group are called slaves. This forms a hier-

archy between the members of a closed update group. The process at the site

which initially accepts the user's transaction is called the source. The

source and the set of master processes that are involved in executing a

given update constitute a related update group. This hierarchy is depicted

in Figure 12.

The processing of an update involves a hierarchical communication

schente where the source communicates with the masters and the masters commu-

nicate with their respective slaves. During this communication, a combina-

tion of two-phase locking and two-phase commit schemes is employed.

Each transaction is given a priority which consists of a time obtained

from a loosely synchronized clock and a site Identifier. This priority is

used in arbitrating the execution sequence of conflicting transactions.

-49 -

query

Source Rl ate/ / Update

-/ Group

/
transaction transaction

transaction

Master Master M

aclosedl

update a
group s closed

slavesl y s update

slaves group

closedco
update
group

Figure 12. The Hierarchical Organization of Processes

- 50 -

Algorithm:

Step 1: t''ZANSACTION TNTTIATION] A query Is entered at a site and ac-
cepted by the fragment process at that site which then becomes
the source.

Step 2: [FORMATION OF CLOSED AND RELATED UPDATE GROUPS] The source de-
composes the query into subqueries with respect to the fragments
that are effected by the subqueries. The source then forms the
related update group. Thus, each subquery effects only one
closed update group.

Step 3: [INFORM MASTERS OF THE NEW TRANSACTION] The source sends a se-
cure message to the masters in the related update group informing
them that a new transaction is being initiated. Then goes to
Step 13 and waits for responses there.

Step 4: [MASTER RE.JECTS IF CURRENTLY BUSY] When each master receives the
secure message, it checks its own status. If it is currently pro-
cessing another transaction, the master returns a reject message
together with the priority of the transaction being processed and
continues its own operation. Step 13 is then taken.

Step 5: [IF NOT BUSY, THE MASTER FORMS AN UPDATE LIST] If the master is
not processing another transaction, it forms an update list (i.e.,
the list of tuples and their modified values).

Step 6: [THE MASTER ASKS SLAVES TO LOCK] The master then sends a lock
message to all the slaves in its closed update group and includes
the update list. Then goes to Step 9 and waits for responses
there.

Step 7: [SLAVES CHECK THEIR STATUS; IF ALREADY RECEIVED A PREVIOUS LOCK
REQUEST, REJECT THE NEW ONE] When the lock message is received
by slaves, each slave process checks its own status. If the slave
process already has a lock message, then it returns a negative-
acknowledgment message with the priority of the query which issued
the previous lock message. The slave then continues Its own oper-
ation In Step 9.

Step 8: [IF NOT BUSY, SLAVES LOCK THEIR FRAGMENTS AND CKNOWLEDGEJ If thle
slave processes have no previous lock messages, they lock their
respective fragments and send an acknowledgment message back to
their masters.

Step 9: [IF ALL SITES ACKNOWLEDGE, MASTER INF'ORMIS SOURCE] The master waits
until it hears from all of its slaves. If all the slaves respond
with positive acknowledgments, the master sends a secured message
to the source and goes to Step 16 and waits there for further in-
structions. Otherwise, it continues with Step 10.

Step 10: [SOME SITES REJECT; COMPARE PRIORITIES] If any one slave responds
with a negative acknowledgment, the priority of the transaction as-
sociated with negative acknowledgment is compared with the current
transaction. If the priority of the former is greater, then goes
to Step 11. Otherwise, it sends another lock message to the slave
which returned the negative acknowledgment and keeps doing this
until the slave responds with positive acknowledgment, then
executes Step 9.

-51 -

Step 11: (CURRENT TRANSACTION OF LOWER PRIORITY; INFORM SLAVES TO GIVEIIP:
INFORM SOURCE ABOUT REJECTION) in this case, the current trans-
action is of lower priority and should be cancelled. Therefore,
the master sends a recover message to the slaves and a reject
message to the source process, accompanied with the priority of
the transaction which caused the rejection.

Step 12: [SLAVES RELEASE LOCKS AND GIVEUP] When the slaves rece'.ve the
recover message, they discard the associated update list and
release the lock on their fragments.

Step 13: While the source is waiting a response from the masters, it can
get one of the two messages: secured or rejected. If it re-
ceives secured messages from all the masters, goes to Step 15,
otherwise continues with Step 14.

Step 14: [SOURCE GETS REJECTION MESSAGE; COMPARES PRIORITIES] If the
source receives a reject message from one or more of the masters,
it checks the priority of the transaction which caused rejection
against the current one. If the latter is higher, it keeps send-
ing secure messages to the rejecting masters until they respond
with secured; then goes to Step 15. Otherwise, it semds a backup-
recover message to all the masters who responded with secured mes-
sages asking them to cancel the current transaction. Then goes
to Step 20.

Step 15: (SOURCE RECEIVES ACCEPTANCE MESSAGE; ASKS MASTERS TO COMMIT]
When the source receives secured messages from all the masters,
it sends a commit message to all of them, then goes to Step 19 to
wait for responses.

Step 16: [IF MASTER RECEIVES COMMIT MESSAGE, EXECUTES UPDATE AND ASKS SLAVES
TO DO THE SAME] While the masters are waiting for responses from
the source, they can either receive a commit or a backup-recover
message. If they receive a backup-recover message, go to Step 11.
Otherwise, they execute the update on their own fragments and send
an update message to their respective slaves. Then they wait for
acknowledgment in Step 18.

Step 17: [SLAVES UPDATE AND ACKNOWLED)GE] When the slaves get the update
message, they execute the update on their respective fragments and
respond with an acknowledgment message.

Step 18: [MASTER WAITS FOR ACKNOWLEDGMENT FROM ALL, SITES AND INFORMS THE
SOURCE] The master waits until it receives the acknowledgment from
all the slaves. Then, it sends a committed message back to the
source.

Step 19: [SOURCE INFORMS USER PROCESS] When the source gets committed mes-
sages from all the masters, it informs the user process to that
effect.

Step 20: The algorithm terminates.

The algorithm employs a two-phase locking scheme since it obtains thle

locks on the fragments before taking any other action (i.e., Steps 3 through

13). It also employs a two-phase commit scheme, since it first makes sure

that all the fragment processed have an updated version of their fragments

- 52 -

(Steps 5-8) before the update is actually committed and its effects are re-

flected in the database (i.e., Steps 15 through 19).

One advantage of the algorithm is that transaction processing is dis-

tributed among a number of sites, instead of being concentrated on one site.

It can also handle concurrent execution of multiple transactions of the same

or different query as long as these transactions belong to different closed

update group (i.e., they do not use the same fragment. See Figure 12 again).

However, if some tuples (i.e., data items) of a fragment is involved on one

trinsaction and some other types of the same fragment is involved in another

transaction, these two transactions cannot be executed concurrently even

though the tuples involved in both transactions do not overlap. Thus, trans-

actions of this type are executed serially.

Another problem that is not addressed by the scheme is what happens if

the source is one of the slave processes. In this case, the source process

can not be at the top of the hierarchy, making the establishment of a hier-

archy of processes difficult.

5.1.13 System-Wide Ordering Scheme

Another locking type algorithr. P er791, which supports fully-duplicated

databases, attempts a system-wide orderfirg o1 transactions and leaves lock-

ing to individual sites.

The process executing transactions at each site is called the registrar.

These registrars are responsible for placing a transaction in input queues

at their respective sites and executing the transaction from these queues.

Furthermore, at each site there has to be as many input queues as there are

sites in the network, one for each site. How thesE queues are utilized in

executing transactions are explained later during the discussion of the al-

* gorithm.

The transactions that may run on the system are grouped into four:

*(1) estimate, (2) read, (3) write, and (4) update. Estimates are

those transactions which aim to read the value(s) of some data Item(s) in

the database regardless of whether the values of the data item(s) are being

updated or not. The value read may not be up to date, since there may he

transactions in the input queues which modify the value of the data items

being read. Unless the effects of the modification Is reflected in the en-

tire database, the values of the data items may be unpredictable. However,

the contention here is that for some applications this may he sufficiently

accurate, therefore predictable, that the applications, i.e., transactions,

may be carried out without any need for synchronization which in turn avoids

any delay due to synchronization.

A transaction of the read type must access the up-to-date values of the

data items. Thus, if it is issued at time t, all the transactions that were

issued prior to t must be completed before this transaction is to be exe-

cuted.

A transaction of the write type can modify a data item value. It is

asynchronous in the sense that as soon as a write request is placed in an

input queue, the transaction which issued the request can go ahead and re-

sume its other activities without waiting for the write request to be car-

ried out.

A transaction of the update type first reads the values of some data

items, computes the new values and then writes the new values back into

the database. The transaction therefore goes through the following steps:

Waiting in the input queue to access the database, locking the part of the

database that will be accessed, computing the new values and then issuing

a write request.

As was mentioned above, the algorithm tries to maintain a system-wide

ordering of the transactions. This ordering is maintained by time stamping

transactions which consist of a local clock value and a site identifier.

The ordering within events that initiate at the same site is the order of

their timestamps. The ordering of events at two different sites is defined

as follows: Event #f1 precedes event #~2 if and only if (1) the timestamp of

event #1 is smaller than the timestamp of event #t2, or (2) if their time-

stamp values are equal, than the identification number of the site of event

#1l Is smaller than the id number of the site of event #~2.

Sites move their clocks forward between two successive local events.

When a message arrives at a site, the timestamp of the message is checked

against the time of the local clock. If the local clock is earlier than the

timestamp of the message, it is advanced to he equal to the timestamp. Al ter

this adjustment, the local clock is again advanced, since a local event has

occurred in receipt of the message.

Algorithm:

Step 1: [TRANSACTION INITTATION] At the site where the update message ori-
ginates, say Si, a seuneof messages is generated as follows:

- 54 -

(BEGIN, Ci), <Read messages and Write messages>,(END)

where Ci is the timestamp. The reason for having BEGIN and END
enclosing the message sequence is to ensure that these operations
are performed indivisibly.

Step 2: [PLACE TRANSACTION IN LOCAL QUEUE] Site Si places this sequence

in its own queue I.

Step 3: [WAIT FOR TURN TO EXECUTE THE TRANSACTION] Site Si waits until
the sequence becomes executable. For a transaction to become
executabl, two conditions have to be met: (1) the transaction
has to get to the top of one of the queues; and (2) the time-
stamp of that transaction has to be earlier than the timestamps
of all the transactions which are at the top of all the other
queues at that site.

Step 4: LOCAL LOCKING FOR TRANSACTION EXECUTION] When the sequence made
up In Step I becomes executable, the registrar sees BEGIN at the
top of the queue i. This signals that no other transaction can
be executed at that site (i.e., local-site locking).

Step 5: [READ AND COMPUTE NFW DATA ITEM VALUES] The registrar reads the
requested data item value(s) and performs the computations (if
any).

Step 6: (BROADCAST THE NEW VALUES ALONG WITH THE TRANSACTION] The regis-
trar broadcasts another sequence of messages as follows:

(BEGIN, Ci),<Write messages>(END).

This broadcast informs the other sites of the update. Note that
the timestamp of this new sequence is the same as the timestamp
of the original sequence generated in Step 1.

Step 7: [EACH SITE PLACES THE TRANSACTION IN CORRESPONDING QUEIE] When
each site receives the sequence, they put it in their i-th queue
(i.e., the queue corresponding to the site which initiated the
update).

Step 8: [WAIT FOR TURN TO WRITE; LOCAL T.OCKING FOR WRITINC] When this
sequence becomes executable as discussed In Step 3, the registrar
locks out the execution of any other transaction and executes the
write request.

Step 9: [RELFASE LOCKS] As each site completes executing the sequence, it
deletes the sequence from its queue. When EN) is encountered it
signals the end of the update and the locks are released.

Step 10: The algorithm terminates.

We note that in this algorithm each site is locked to execute one trans-

action at a time.

Even though it is not mentioned in [Her791, this scheme can he extended

to detect site or communication link failures. For example, if the queue .

at site I Is empty, the registrar of the site i may send an Inquiry message

to the site 1. The registrar of the site I may respond Immediately with an

acknowledgment which in turn will he placed in the queue j at the site I.

- 55 -

Thus, after a fixed amount of time, the queue j at the site i either con-

tains the acknowledgment from the site j or not. The paper discusses the

operation of the system under abnormal conditions which include withdrawal

of a site from the system, reinsertion of a site to the system, initiali-

zation and termination of the system.

5.1.14 Counter Synchronization Scheme

Another approach, where individual sites execute a single transaction

at a time [Kan79], employs a method to sequence the execution of transactions

on the basis of synchronous counters, known as logical clocks. The algorithm

assumes the presence of discrete counters at each site. These counters are

all advanced synchronously between events. The scheme is designed to work

on fully-duplicated databases.

At every site (denoted with Hi, i=i,...,n where n is the number of

sites in the network) there is a copy of the database (Di) which is managed

by a database management process (DDM.). Furthermore, the counter at each1

site is handled by a counter (i.e., logical clock) manager (CLMi). At a

given instant, the content of the counter at the site H i is denoted by LTi.

The synchronous advancement of all the counters in the system are based upon

the following rules:

(1) Each CLM. sends a tick message to every other CLM. when LT. ad-

vances from (k-i) to k.

(2) Each CLM advances its LT from k to (k+l) after

(a) CLM receives a tick message from every other CLM. or

(b) DBMi notifies CLM that it has completed the work at the

time k.

We will use the term counter, clock and logical clock interchangeably. Thus,

content of the counter is synonymous with the time of the clock.

Thus, the clocks are advanced system-wide when the clock at a site is

increased because either the site received a tick message or a local event

took place.

The low-level synchronization mechanism that may be used at each site

can either be locking or timestamping data items. In the remainder we

assume timestamping of data items is used. In this case, each data item in

each copy of the database is timestamped with the timestamp of the last up-

date which effected it. The timestamp of an update request (which origin-

ates at site Hi, denoted by TSIs the time (LTi) when that update was

- 56-

issued. Besides being timestamped, each update request (RQ.) is assigned

a priority which consists of the timestamp of RQi, the site number (H1) and

the process priority at site H1 .

Two algorithms are discussed in [Kan79] one of whIch is claimed to

perform better in terms of the volume of data that has to be transmitted

for each update. In the remainder, we will be considering this version of

the algorithm.

Algorithm:

Step 1: [TRANSACTION INITIATION] An application process, Pi. running at
the site H. submits read requests to DBM. 1

Step 2: [READ SET FORMED] DBM. provides P. with the required information1 1

which forms the read-set, RSTi, of P..

Step 3: [READ SET LOCALLY PLACED ON STACK] DBMj inserts RST. onto a stack.
From then on, if any other process modifies RSTi, thel stack keeps
track of the modification.

Step 4: [NEW VALUES ARE COMPUTED AND UPDATE REQUEST IS FORMED) Pi does
whatever computations are necessary and sends an update request,

RQi, to DBM RQi, at this stage, consists of the write-set,
WSTi, of P i"

Step 5: [UPDATE REQUEST IS BROADCASTED) The DBM. adds the timestamp TS.
to the RQ. and sends it to every other I)*M.. Assuming LT.=k when
this event takes place, the time is now ad4 anced to (k+l) '(i.e.,
LT =k+l for all i).

Step 6: [EACH SITE PLACES UPDATE REQUEST IN A QUEUE] When every other DBM.
gets the RQi, it puts it onto a request queue. It then advances
the time to (k+2)(i.e., LT1 =k+2 for all i).

Step 7: [SITES CHECK QUEUE AND PICK UP AN UPDATE REQUEST] At the beginning
of time (k+2), each DBMj in the system checks its queue for time k
and picks up the update request (RQ.) that was initiated at time
LTA=k. (We note that now every DBM. picked the update request it
ha3 initiated at time k. So the upAate request initiated by P. at
site Hi is picked up by DBMi.) I

Step 8: [SITES CHECK IF UPDATE IS ACCEPTABLE] Each DBM1 checks the ROi
which it had picked in the previous step to determine if it is ac-
ceptable. An update request RQi is acceptable if the following
are all true:

(a) The read-set, RSTi, corresponding to RQi was not modified after
it was put on the stack.

(b) The read-set RST1 , is not modified in this time period, i.e.,
at (k+2).

(c) The intersection of the read-set RSTi and the write-set
WST is empty for each WST of other update requests ROj
at lime TS -(k-1) (i.e., t~e update request RQj does not
conflict with any other update request that was issued

-57-

earlier at any other site but was received later).

(d) The intersection of RSTi and WSTj is empty for each WS'j
of RQj at rSj-k (i.e., RQi does not conflict with any re-
quest that was initiated at any other site at the same
time).

if t request RQi is not acceptable, rejects the request and goes
to . p 13.

Step 9: [ACCEPTABLE; ORIGINAL SITE ASKS OTHERS TO EXECUTE THE UPDATEJ
DBM i sends an EXEi message to every other DBMj asking them to exe-
cute the update. EXE i consists of an identifier for RQi and a
timestamp TSi=k+2.

Step 10: [SITES PLACE UPDATE IN AN EXECUTION QUEUE] Each DBM i (including

the one which issued EXEi) places EXEi in an execution queue.
Then the clocks are advanced to (k+3).

Step 11: [PICK UP AN UPDATE FROM EXECUTION QUEUE AND EXECUTE] At the he-
ginning of time (k+4), each DBM i takes EXEi stamped with time
(k+2) out of execution queue and applies the update to Di.

Step 12: [UPDATE COMPLETED; INFORM USER PROCESS] DBM i (the initiatin4
DBM) informs Pi that the update is completed.

Step 13: The algorithm terminates.

The message exchange between two nodes in initiating two update re-

quests at the same time and in executing them is depicted in Figure 13.

The major shortcomings of this approach are two: First, it forces the

transactions to be executed serially at each side. Second, it is complex

due to the use of many different queues at each site.

5.1.15 Control Token/Ticketing Scheme

Several possible algorithms passing a token from one site to the next

site and allowing the current holder of the token to initiate transactions

are discussed in [Lel78]. We will consider the simplest case and present

its underlying principles, since no full algorithm is given in I1e178].

The scheme assumes the presence of two processes at each site: a

storage management process which is responsible for data handling and a con-

troller which is in charge of executing the transactions. There is a ring

connecting the controllers. The notion of predecessor and successor art,

defined for the controllers on the ring. The control token which circu-

lates around the ring carries a sequence number with it. When a controller

becomes the holder of the control token, it can initiate transactions. The

controller also tickets those transactions with consecutive sequence numbers

beginning with the sequence of the token. The sequence number in the token

- 58 -

LTi LT

P issues RO- P. issues RO.i"3 3I ROi O

DBM i accepts RQi E---- EXE. "-DBM accepts RO.
and sends EXE. k+2 EX. k+2 and 3 sends EXE

k+3 k+3

DBMt executes - -- DBM. executes

ROi and ROj. k+4 k+4 RQi and RO

TIMF

LTi: Time (or counter value) at node IIi.
Pi: Application process at node Pi .

DBMI: Database manager at node "i.
R9i: Update request or message.

EXF.I: Execution update request message.

Figure 13. Synchronization via Counter (Value)
or Logical clock (Time).

-59-

will be made one greater than the last consecutive sequence number used,

before the token is passed on to the next controller. Since the token

travels around the ring in one direction, the uniqueness of the tickets

given to transactions is guaranteed.

When receiving the transactions, the storage processes execute the

transaction in the consecutive order of their tickets. Thus, the serial

execution of the transactions ensures consistency and still allow each site,

to execute the transactions autonomously at its own pace.

If a controller receives a user request while waiting for a token, it

queues the request. When receiving the token, the controller may issue as

many tickets as there are queued requests. In order to eliminate or reducC

the delay for initiating transactions, a controller may issue extra tickets

to cover the user requests which may arrive in between two consecutive ar-

rivals of the control token. As long as they have sufficient tickets, the

controllers can initiate transactions. However, if the prediction for the

number of user requests which may arrive in between two consecutive arri-

vals of the token is wrong, two problems occur. If this number is under-

estimated, then the controller would still have to wait for the control

token to arrive for the purpose of issuing some more tickets. On the other

hand, if the number is over-estimated, then the controller will have to

initiate dummy transactions in order to use up the extra tickets. This is

essential since the storage processes expect to execute transactions in

the consecutive ticket order and cannot tolerate missing tickets. These

dummy transactions become an overhead of the system.

To overcome these problems, an alternative is proposed to use multi-

ple control tokens. In this case, there are several tokens circulating on

the ring and controllers obtain tickets only for those requests which they

receive in between then arrival of two tokens. This eliminates the problems

discussed before, but then there is the extra overhead of maintaining multi-

ple tokens. This may especially be troublesome in trying to recover lost

tokens due to crashes.

5.1.16 Read-Driven Synchronization Scheme

The scheme proposed in [Bad78] is aimed to sequence the execution of

conflicting transactions based on their tinestamps. It is designed to

operate on part ially-dupl Ica ted databases and assumes that the read-sets and

write-sets of a transaction are readily identifiable.

The scheme executes the read *'o; and sr i te stops of aj transact inn

as separate operat ions rather tlion son i iv >i; ; hle one. 1 oi leit h-ox'

cut Ion of a read and compute0e ion,, (t' a t ransact ion, the wr ite oporait ion

is not executed uintilI there, i <l'-;.et road operat ion on the same datai

'ius , the execut ion of tle 'or '-C opr ois t r igizered hv a sabsequent. read

operation, since the vrite operation always has an earlier ti-nestamp.

Algorithm:

Step 1 : (IRANSA 'II ON P NT:I V1 -- 71t Ki ,IT',FKDA AND TT SE TS ANDT)l
51 tFS V iERV HEY , Ii; W il i (I -Ki Di A transact ion arrivxes at a
site whfch wf b e called the "Jnt letiLo site". TFhe itiatinE,
site determines th1e read-sot. s and wri te-sets of the transact ion and
the sites lIwhore the '-Oad srra! ioens (red-sitt Os andj the' Writo oOer-
ations (vr ito-sires) will c ') crr'Ue out. W~e note that the rea.1-
sites and write-sites of a transaction may he the oame or di terent.

Th'le iniriatiniA site also a'si ,n - a tir ,estamp to the transaction.

Step 2: [ASK READ- SI 'lEE AVD YE' '7 1C t T iCAII AND CHMIS V A P1KVIFFIII 2

R FAD -S I 'V I Trhe i olt iat inl ; -jro a setuip messaipe to the read-
and write- sites o L"'.t ac af nd chooses one of the roI-I
sites as the vprf, 'Sc -it a. Ilie messzace contains the s-

crintion of the trane ict ,, Ilist of sites4 involved in the
transaction. theu caa ittrt 1t accrssed and the. t imestamps-.

Step 3: [FPR FIf-RE ED ST 'i!: A'S i 7lt'WION MFS SAr-c S -p INRAE F0
READ-S! FS] 1The pro? orri' ' '- itc, uon rticeipt of the messaipe,
sends ' quest messa-ues to -il the sitos in the netvwork. Th'le aimI

of tht.- request mossacn~t i. to ;i: eachi j to thle wr ite and so't op

messagies that thoy 77iov hir- . i .a:yoner.atcci as dos-t incd to (hut
not vet received v' '''i iorof the cuirrent, transactionl.

Step 4: [17.-il SIT "I, IT:C' r ~ fv \N". 'Km'[R;'I IVFIER.\1'tlN1 l'ach sit'
in the network res pond to tiit reonas t mossal bdp v send ing thic re-

qulired information as psil)-rIcio'losnt if there aire
stswhic h have, not ro o in' aes*t hev s imp 1 swnd

dummy acknowledgments.

Step 5: [REFERRED SITE >i vs.I i' -sMNT N SFI-'NS TFIl) D)lEAi-
Upon receipt of achyci(' t or all the stes the t' or'

road-site c ini) ines-.C al I ti I I i, I d ne n t s i nt o a rea d -c mrao;lm

sage and sends ti tc -n'rai the rearl-it(-s of the current
transact in.

Step 6: [READ-ST''. [11-7 t:\lV) i H,7 WI?:, \ I 01V "AlA '" I VM i'V --

BY (DEPFN'I' !WNDV ' r c'ad-colmianud ;saeiieeId
ait each oIf tlh r uiIt if eic o' t s-n(-o po t he roead - o
t he(cuI -ren t tran ;:i t i ,) - I 'irt h th !,,1 mfI '''i a Io'ssai,) %,,i t) toI' w i ito

commands jist roc,' v d. i ph i c) hi do oIl i (t aIr ,ex ooiitotl, in
thIte ir t ines tampI o rI r I te co (11 I i r t in,' wor i t !es I wit I I
I rI I i'm t ;n- t I , 1 ,, ; I t , I- , TI tr. I' (a o,' I ot I I-') 1t t C cor r olt

tranoa,'C t il1 i es ' X I

-61 -

the write messages are generated; but not sent. Each site waits
for a request message asking for write messages to the write-
sites to send these out.

Step 8: The algorithm terminates.

As indicated in Step 7, the write operations of update transactions

are not executed immediately, but are carried out in response to another

transaction which may require the use of the same sites involved in those

write operations. However, this may be a long time to come, thus causing

delays in response time. To overcome this problem, it is indicated that

the sites may be allowed to send their write messages immediately. It

seems as if this would require quite major changes in the algorithm, since

the responses to request messages may vary between sites depending on wheth-

er or not they have sent out the write messages. This will, in turn, re-

quire some sorting out at the receiving end.

Another point is the volume of information transmitted over the net-

work. Since the acknowledgments to the request message are initiated from

every site, this will cause high volumes of messages to flow towards the

preferred read-site which is likely to cause congestion problems in the net-

work.

5.1.17 Optimistic/Pessimistic Schemes

Two synchronization algorithms, known as P (for pessimistic) and 0

(for optimistic), protocols are proposed in [Mil8O]. Although they are

different, they can be used together in the same distributed system.

Basically, they work on fully-duplicated databases, timestamping trans-

actions and executing the transactions in their timestamp sequence if there

is a conflict. A short discussion is included in the paper on the possible

extensions of the algorithms for partially-duplicated databases.

Protocol P requires that a transaction secure the necessary data items

before-hand prior to the execution of the transaction. In other words, the

data items are reserved first at the site where the transaction originates

and are then reserved at all other~ sites. If the data items have been re-

served in a site, then the execution of the transaction is deferred until

the time to execute (according to the timestamp) the transaction arrives.

After the data items are secured in all sites, the update is carried out

at the initiating site and then on all other sites.

Protocol 0, on the other hand, works on the premise that conflicts may

- 62-

not occur so often. Thus, the transaction is first executed at the initi-

ating site and a tentative update message, containing the new values of

data Items modified bv the transaction and its timestamp, is sent to all

the other sites. If there is no conflict at any of the sites, tben the up-

date Is made permanent; otherwise, the update is discarded and is to be re-

started later.

Protocol P is similar to those algorithms discussed previously which

employ a two-phase commit and two-phase locking protocols and in which

the transactions are ordered in the timestamp sequence for execution at

each site. Thus, it has the same advantages and disadvantages accrued for

those algorithms. Protocol 0 would work quite satisfactorily in case the

frequency of conflicts is low. However, as stated in [Mil80], there is no

guarantee that a transaction will complete in finite time due to repeated

restarts.

5.1.18 Another Site-Locking Scheme

Another algorithm which executes conflicting updates according to their

timestamp orders is reported in [Che8Ob]. The algorithm is basically de-

signed to work on fully-duplicated databases, but a short discussion of nec-

essary changes for partially-duplicated databases is also included in [Che80b].

It employs a two-phase commit protocol and expects two types of queues

to be maintained at each site. QLOC(k) is for requests originated locally

at site k; and, OFOR(k,i) is for rojuests originated at sites i (i=1,2,...,m,

where m is the number of sites and i#k) and received at site k. Thus, at

each site, m queues are kept, one for each site in the system. More speci-

fically one is the QLOC queue for that site and the rest are QFOR queues. These

queues enable the requests to be ordered and the assignment of timestamps to

be facilitated. A timestamp (consisting of a site number and a counter value)

assigned to an update originating at site k has to be greater than any of the

timestamps of the requests in the queues at site k.

Algorithm:

Step 1: [TRANSACTION INITIATION] A update transaction, say, I, is submit-
ted to a site, say site k, and a timestamp (TS(i)) is assigned to
the transaction according to the above discussed rule. This site
(i.e., site k) will be referred to as the source site.

Step 2: [CHECK FOR ANY LOCAL. CONFLICTS; IF EXISTS, REJECT THE UPDATF]
Source site checks its local queues (both QLOC and QFOR) to find

- 63 -

out if update i conflicts with any of those which are already on
queues. At this step only read-write conflicts are checked, i.e.,
(1) the timestamp of i is greater than the timestamp of the other
transaction and (2) the intersection of the read-set of i, RS(i),
and the write-set of the other update, WS(j), is not empty. If a
conflict exists, update i is rejected and the algorithm terminates
for this update (see Step 15). Otherwise, Step 3 follows.

Step 3: [PLACE UPDATE IN LOCAL QUEUE] The update transaction i is placed
in QLOC(k) for its turn to be executed.

Step 4: [COMPUTE NEW VALUES] When its turn comes, the source site computes
new values for the data in the write set.

Step 5: [BROADCAST WRITE-SET TO EVERY SITE] The source site broadcasts the
write set of the transaction to each site. The sites will be called
the cohort sites. Then the source waits for answers from cohorts
in Step 9.

Step 6: [COHORTS CHECK FOR CONFLICTS] Each cohort site checks whether the
incoming update (i.e., i) conflicts with any pending request j
which originated at the cohort site (i.e., checks whether TS(i)<TS(j)
and WS(i) intersected with RS(j) is not empty, for all j in OLOC(h),
where h is the cohort site). If there is a conflict, a counter
associated with the conflict is incremented.

Step 7: [COHORTS PUT UPDATE IN APPROPRIATE QUEUE] Following the conflict
check, each cohort site h places the update into the foreign up-
dates queue associated with the source site (i.e., QFOR(h,k)).

Step 8: [COHORTS SYNCHRONIZE WITH SOURCE] Each cohort site checks if it
had sent the source a message with a timestamp greater than the
timestamp of the update it received from that site (TS(i)). If it
has, continues with Step 12 and waits for instructions from the
source. Otherwise, it sends the identifier of the last uncommitted
update which originated at that cohort site, if there is one. Of
course, the timestamp of this update will be less than TS(i). If
there is no such update, it sends a dummy message indicating the
condition. These are called check messages. Then each cohort site
waits for message from the source in Step 12.

Step 9: [SOURCE GETS REPLIES FROM COHORTS] The source waits until it gets
a check message or an update whose timestamp is greater than TS(i)
from a majority of cohort sites. Then it checks the conflict count
of the locally initiated update i. (Recall that the conflict count
of i is incremented at Step 6 while site k was serving as a cohort
for another update). If there is a conflict (i.e., conflict
count > 0), goes to Step 10; otherwise goes to Step 11.

Step 10: [CONFLICT EXISTS; WATT] If a conflict exists, the source site
(i.e., k) waits until all the conflicting requests are either com-
mitted or aborted; then goes to Step 11. If, however, any of the
conflicting requests are committed, then it sends abort messages to
each of the cohorts and removes the update from QLOC(k). Then goes

to Step 15.

Step 11: [NO CONFLICT; SOURCE COMMITS THE UPI)ATE] If there is no conflict,
then the source sends commit messages to every cohort site, makes
the updates permanent to the local database copy and removes the

MMOM

- 64 -

update from QLOC(k). Then goes to Step 15.

Step 12: [COHORTS WAIT FOR MESSAGES FROM SOURCE] The cohort sites wait
until they receive a commit or an abort message for update I
from its source site k. If they receive an abort, they execute
Step 13. If they receive a commit, they execute Step 14.

Step 13: [ABORT RECEIVED; ABORT THE UPDATE] If a cohort site h receives
an abort message for update i irom site k, then it removes i
from QFOR(h,k), and goes to Step 15.

Step 14: [COMMIT RECEIVED] When a commit message is received at a cohort
site h, the site h makes the update permanent on the local data-
base copy and sends an acknowledgment to the source site k. Then
all the locally generated conflicting updates which were waiting
for the resolution of the committed update (due to Step 10) are
aborted and removed from QLOC(h). The committed update is also
removed from QFOR(h,k).

Step 15: The algorithm terminates.

We note that the rejection of a locally originating update at Step 2

may be unnecessary. Originally, an update i originated at the site k is

rejected by the site k if there is an update j in QLOC(k) or QFOR(k,h)

(h=l,...,m) such that TS(i)>TS(j) and RS(i) has a non-null intersection

with WS(j). However, if the current update wants to read data that will

be updated by a transaction of earlier timestamp, there should be no reason

for rejection since the updates are timestamped. Rather, update i should

defer the reading until update j completes the updates.

5.2 Majority Consenst!5 Approach

The majority consensus algorithm [Tho75], [Tho78], [Tho79] is based

on the principle that sites involved in the update requests synchronize

these requests by voting on each of the updates. For an update request to

be accepted by the system, it must receive affirmative votes from a majority

of the nodes.

The algorithm assumes a fully duplicated database, although it is men-

tioned that the algorithm can be extended to handle partially duplicated

databases. Furthermore, the algorithm assumes a daisy chain for communi-

cations (as the resiliency algorithm of Section 5.1.1).

To facilitate the voting mechanism, both the data and the update re-

quests are timestamped. The timestamps on a data item indicate the time that

the value of the data item was last updated. Each timestamp is a pair (T,i)

where i is the preassigned number of the database management process, DBMP,

-65 -

that initiates the update request, and T is the time obtained from that

DBMP's local clock. There is a predetermined ordering of the DBMPs.

The update requests are initiated by an application process AP; however,

all database accesses (either for retrieve or for update) have to be han-

dled by DBMPs that reside at the nodes. Since (1) the update may involve

the computation of the new values of variables on the basis of their (or

other variables') current values, and since (2) the current timestamps on

the data are used during the voting process for synchronization purposes,

AP has to query the database and read the values and the tiinestamps of the

data elements involved in an update, before submitting the update request

to a DBMP. The set of variables whose values are read at the beginning are

called the base variables while those whose values are going to be updated

are called update variables. Note that update variables have to be a sub-

set of base variables. Consider an example where a transaction is going to

update the value of variable x as follows:

x= (x+y)/2

in this case, x is the update variable, whereas (x,y) form the base varia-

bles.

The details of the voting procedure and how an update request is ac-

cepted (or rejected) will be given in the algorithm. However, three points

need to be mentioned prior to the discussion of the algorithm.

First, a DBMP can take one of the following four actions when it is

considering a request: (1) it can vote OK to accept it, (2) it can vote

REJ not to accept it, (3) it can vote PASS indicating that a possible dead-

lock condition exists, or (4) it can defer voting on that request.

The first two alternatives are clear and will hecomec clearer when they

are placed in proper context within the algorithm. The third and fourth

alternatives exist to handle the following situation. When a DBMP is con-

sidering a request, it may find out that it is conflicting with a previous

request for which it has voted OK (i.e., conflicting with a pending request).

In this case conflicting means that the base variables of one request and thle

update variables of the other are not mutually exclusive. If such a situa-

tion exists, either the third or the fourth course of action is taken. If

the priority of the request -- which is taken to be the timestamp of that

request -- is lower than the priority of the pending request, then the DBMP

votes PASS; otherwise, it defers voting on the present request but remembers

r
-66-

it for later consideration. Voting a PASS indicates to the DBMP on the

next node that a possibility of deadlock exists.

The second point that needs to be mentioned Is that a request on a

given site is considered pending if the I)MP on that site voted OK for it,

but the request has not yet been accepted by the system.

Finally, in order to obtain a majority consensus on a request, it is

not sufficient to get OK votes from more than half of the DBMPs in the sys-

tem. It is necessary that no DBMP should vote REJ for the request while

the system is accumulating OK votes for a majority. Consider a system with

8 sites (thus, 8 DBMPs) and consider that the update request is initiated

at DBMP #1. To be accepted, the request should get 5 OK votes. Suppose

voting goes as follows:

DBMP #1: OK
DBMP #2: OK

DBMP #3: PASS
DBMP #4: OK
DBMP #5: OK
DBMP #6: OK

At this point, the request has accumulated the required 5 OK votes, so

it is accepted and the voting terminates. The presence of a PASS vote does

not hinder its chances of being accepted as long as it doesn't get enough

PASSes (say, 4 PASSes) to make it impossible to accumulate the required OK

votes. However, if any DBMP votes REJ before the majority is obtained (say

DBMP #6 votes REJ) voting terminates and the system rejects the request.

Nev u will outline the algorithm for the majority consensus approach.

Algorithm:

Step 1: [TRANSACTION INITIATION] Transaction is generated at an appli-
cation process, AP.

Step 2: [OBTAIN CURRENT VALUES AND TIMESTAMPS OF DATA ITEMS] AP queries
the local copy of the database to obtain the current values and
timestamps of the base variables. If the update is a pure write,
i.e., does not involve computation of new values for the data

elements based on their old values, Step 4 is followed.

Step 3: [COMPUTE NEW VALUES] AP computes the new values for the update
variables.

Step 4: [CONSTRUCT UPDATE REQUEST] AP constructs an update request which

consists of the update variables, their new values, base variables

and their timestamps. AP then passes the update request to a DBMP.

Step 5: [ASSIGN A TIMESTAMP] DBMP assigns a timestamp to the update re-

quest. The following steps 6-13 are repeated for each DBMP in the

-67-

daisy chain until the update request is either accepted or re-
jected.

Step 6: [COMPARE TIMESTAMPS OF BASE VARIABLES AND DATA ELEMENTS] I)BMP
compares the timestamps of the base variables in the update re,-
quest with the timestamps of the corresponding data elements in
the local database copy.

(a) If the timestamp of any base variable is less than the time-
stamp of the corresponding data item in the database (i.e.,
the base variable is obsolete), votes REJ for the request.
Goes to Step 7.

(b) If timestamps are equal (i.e., all the base variables are
current), then Step 8 is followed.

Step 7: [TIMESTAMP OF BASE VARIABLES < TIMESTAMP OF DATA ELEMENTS;
REJECT THE REQUEST] The DBMP rejects the request and notifies
AP and all the other DBMPs that the request is rejected. Goes
to Step 17.

Step 8: [TIMESTAMPS ARE EOUAL; CHECK FOR CONFLICT] DBMP checks if the
request conflicts with any pending request. If it does not,
goes to Step 9. If it does, checks if the pending request has a
higher priority than the present one. If it does, goes to Step 11:
otherwise, goes to Step 13.

Step 9: [NO CONFLICT; VOTE OK Since the base variables are current and
the request does not conflict with any pending, votes OK for the
request.

Step 10: [CHECK FOR MAJORITY CONSENSUS; IF OBTAINED INFORM ALL SITES] DBMP
checks if a majority consensus is achieved by the OK votes. If it
is, accepts the request and notifies AP and DBMPs to that effect.
Then goes to Step 15. If the majority is not yet achieved, goes
to Step 14.

Step 11: [CONFLICT EXISTS AND PENDING REQUEST HAS HIGHER PRIORITY; VOTE
PASS] Since the conflicting pending request has a higher priority
than the current one, DBMP votes PASS.

Step 12: [CHECK FOR NUMBER OF PASSES] DBMP checks if enough PASS votes are
accumulated to make a majority consensus impossible. If that is
the case, then goes to Step 7.

Step 13: [CONFLICT EXISTS AND THE PENDING REQUEST HAS LOWER PRIORITY; DEFER
VOTING] DBMP defers voting on this request and forwards it and
the votes accumulated so far to the next DBMP.

Step 14: [SITES WAIT FOR RESULT OR ANOTHER REOUEST] Those DBMPs which have
finished voting on a request will wait until they either learn
that a request has been resolved or are called upon to vote on
another request. If the latter is the case, then they go to Step 6.
If, however, they learn that a request has been accepted, then thev
go to Step 15. In case of rejection, they go to Step 17.

Step 15: [REQUEST ACCEPTED; APPLY THE UPDATE TO LOCAL COPY] Since the re-
quest is accepted, DBMP applies the update request to the local
copy of the database.

Step 16: [REJECT THE CONFLICTING REQUESTS THAT WERE DEFERRED] DBMP relects

- 68 -

the conflicting requests that were deferred because of the
accepted request. Then goes to Step 18.

Step 17: [REQUEST REJECTED; CONSIDER THE CONFLICTING REOUESTS THAT WERE
DEFERREI)] Since the request is rejected, DBMP can reconsider
those which were deferred because of the rejected reque' if
there are deferred requests, the DBMP goes back to Step r.

Step 18: The algorithm terminates.

The major disadvantage of this scheme is the communication cost in-

volved. Before a transaction can be accepted or rejected, a number of

sites have to be consulted.

5.3 Conflict Analysis Approach

The concurrency control algorithms developed for the distributed data-

base system SDD-l [Rot8O] are based on the premise that some classes of

transactions do not need any synchronization and other classes need varying

degrees of synchronization. Furthermore, these transaction classes and

their synchronization requirements may be determined either at database

creation time or at transaction preparation time. Therefore, several dif-

ferent synchronization protocols are developed to handle these classes.

Let us first discuss some of the underlying assumptions and the environment.

The initial version of SDD-l concurrency control mechanism was designed

to support fully-duplicated database systems [Ber78]. The latest version

supports partially duplicated database systems [Ber8Ob]. Internally, SDD-I

consists of two types of modules: transaction modules and data modules.

Data modules, DMs, store the data and carry out local DBMS functions (in

much the same way as a centralized DBMS does). The transaction modules,

TMs, on the other hand, interface with the user and supervise the execution

of user transactions. Note that at each site there may either be a TM or

a DM or both.

Two aspects of SDD-l are very similar to the majoritv consensus algori-

thms discussed in Section 5.2. First, all transactions are timestamped when

they are initiated. The timestamps are globally unique. Thus, there is a

smaller-than or greater-than relationship among the timestamps. Furthermore,

each data item in the database is timestamped. The timestamp of a data item

is the timestamp of the last update transaction that updated the data Item.

Secondly, the execution of transactions in SDD-l are also divided into three

parts: a RFAD part, an EXECUTE part and a WRITE part.

SDD-l assumes that all the possible transactions that may be run against

- 69 -

the database be divided up into transaction classes at the outset. Fach

class must be specified in terms of a read-set and a write-set. Further-

more, the TM for each class must also be identified. By dividing trans-

actions into classes, it is hoped that transaction conflicts can be ana-

lyzed and studied off-line, instead of at the run time, since two trans-

actions can conflict if and only if their corresponding classes conflict.

Furthermore, if possible conflicts between the classes can be determined

prior to transaction execution, then the type of synchronization necessary

can be determined beforehand. Thus, the run-time cost of synchronization

could be minimized. For non-conflicting transactions, their run-time syn-

chronization cost would not even exist.

Conflict graphs are used for conflict analysis between classes. A

conflict graph consists of a set of vertical node pairs and a set of slant

edges. Each vertical pair of nodes corresponds to a transaction class.

Specifically, one of the nodes in the pair correspond to the read-set of the

class and the other to the write-set. The slant edges between the nodes

indicate the overlapping read-sets and write-sets. A sample conflict graph

is shown in Figure 14, where, for example, there are five transaction class-

es. The read-set of transaction class 2 overlaps with the write-set of

transaction class 4. The conflict graph is developed either at database

creation time or at transaction preparation time and is used to determine

the amount of synchronization required by each transaction class.

Since the transactions are divided into classes, there are two major

problems to solve. First we have to determine how to synchronize the trans-

actions within a given class. This is handled easily in SDD-l. The rule

is that conflicting transactions within a class are executed serially in

timestanp order. Second problem is to synchronize transactions in differ-

ent classes. This is accompolished by the protocols. Our discussion of

the protocols will be informal and rather intuitive. For a more formal

treatment, the reader should refer to fBer8Ob,Ber8OcJ. For short, whenever

we refer to a transaction, we are actually referring to a class of trans-

actions. We also refer to read-sets as read and write operations, respec-

tively.

Protocol 1: If the read operations from transaction i conflicts with

the write operations from another transaction J and if the read operation

of i is carried out before the write operation of j at one 11M, then it has

to be carried out in that order by all DMs.

- 70-

r r2 r 3 r 4 r 5

wI w2 w 3 w4 w5

ri denotes READ of transaction class i

wi denotes WRITE of transaction class i

Figure 14. An Example of Conflict Graph

711

Protocol 2: If the read operation of transaction i conflicts with

the write operation of transaction j and if there is a third transaction

k whose timestamp is greater than that of transaction J, then read opera-

tion of i is always carried out before the write operation of k wherever

they occur together and conflict. If the timestamp of k is smaller than

that of j, then the read operation of i is always carried out after the

write operation of k wherever they occur together and conflict. If the

timestamp of k is smaller than that of j, then the read operation of i is

aiLways carried out after the write operation of k wherever they occur to-

gether and conflict.

What Protocol 2 is trying to ensure is that if a transaction is to

read the output of two other transactions, then it should read them in

their respective timestanp orders at all times and not in reverse time-

stamp order.

Protocol 3: If the read operation of transaction i conflicts with

the write operation of transaction J, then, wherever they occur together,

they are executed in timestamp, order.

Protocol 3 ensures that if two transactions read each other's

outputs, then they do not read before the other writes.

Protocol 4: This cycle-breaking protocol is activated whenever pro-

tocols 1, 2 and 3 cannot or are not desired to be utilized. A cycle forms

when, for example, the read-set of transaction T1 overlaps with the write-

set of transaction T2, the read-set of T2 overlaps with the write-set of

T3, and the read-set of T3 overlaps with the write-set of Tl. In this

case, a cycle is formed from T1 to T2 to T3 and back to Ti.

If a transaction arrives which does not fit into any of the predefined

classes, protocols 1, 2 and 3 cannot be utilized. If transactions cause

cycles, they are not desirable to be run with protocols 1, 2 and 3. Tn

these cases, protocol 4 is activated which effectively shuts off the entire

system from other work and executes the transaction which causes the cycle.

of course, before the system is shut off for running the new transactions,

those which are currently being executed must be completed.

- 72 -

6. CONCLUDING REMARKS

In this report we have discussed the concurrency control problem in

centralized and distributed database systems and surveyed the techniques

that have been developed for this problem. As we had indicated, even

though an extensive body of knowledge has been generated, a unifying theory

has yet to emerge. At this time, the main thrust of research in this area

seems to be concentrated on developing a "new" scheme which is "superior" --

in some sense -- to the existing ones. In most cases, even this analysis

of superiority seems to be superficial.

Some studies have been started in performance related issues. However

such studies are still incomplete. For example, one study [Gar78c] has

found that locking-based schemes are superiod as far as the system perfor-

mance is concerned. Although this observation is important, it does not

address the issues of deadlock handling and lock maintenance and the effects

of these issues on the complexity and performance of the resulting system.

The data-locking-based approaches, especially centralized locking, seem

to produce minimal system delays and lower communication overhead. However,

as stated above, one must address the problems of deadlock and lock manage-

ment. Furthermore, locks associated with each data item are sources of

storage overhead. In site-locking schemes, these problems are avoided. In

general, these schemes are much simpler. On the other hand, the degree of

concurrency achieved by these schemes are relatively lower.

The majority consensus approach also overcomes the problems of dead-

lock and lock management. In fact, this approach is quite similar to

individual-site-locking schemes; and in some classifications, they are

grouped together. The performance of the majority consensus approach is rela-

tively poor, since extensive communication among the sites is necessary to

gather the votes and to determine the fate of an update.

The conflict-graph analysis approach seems to be promising. Two subtle

problems still exist: (1) Extensive analysis of transactions must he done

in determining the transaction classes prior to any execution of the trans-

actions. (2) There is considerable system work involved in developing and

analyzing the conflict graphs. If a mistake is made in determining the

transaction classes, the number of transactions which does not fall into

any class will increase. Consequently, special protocol (P4) will be

activated frequently. Since this protocol causes the entire system to he

shut off from other work, the system will suffer performance degradation.

-73 -

Furthermore, no matter how careful the pre-analysis is conducted, there

will be cases where a new transaction class must be defined or an existing

one must be modified. Each such event will cause the conflict graph to bt,

redeveloped and re-analyzed. There is no indication how frequent or how

complex this operation may be.

As one can see, none of the techniques reviewed in this paper are (le-

void of shortcomings. What we have tried to do here is to highlight some

of the basic advantages and problems associated witO each approach. Based

on this, tradeoffs can be established to specify the conditions under which

one technique may be preferable to another.

- 74-

REFERENCES

The following list of publications is related to the
topic discussed in this report. Those which have not
been discussed or referenced are preceeded bv an *.

[Adi78] Adiba, M., et. at., "Issues in Distributed Data Base Management
Systems: A Technical Overview", Proceedings of the Fourth
International Conference on Very Large Data Bases, pp. 89-110,
1978.

[Als76] Aslberg, P.A. and Day, J.D., "A Principle for Resilient Sharing
of Distributed Resources", Proceedings of the Second Software

Engineering Conference, pp. 562-570, 1976.

[Bad78] Badal, D.Z. and Popeck, G.J., "A Proposal for Distributed Con-
currency Control for Partially Redundant Distributed Data Base
Systems", Proceedings of the Third Berkeley Workshop on Distri-
buted Data Management and Computer Networks, pp. 273-285, 1978.

*[Bad79a] Badal, D.Z., "Correctness of Concurrency Control and Implications

in Distributed Databases", Proceedings of COMPSAC, pp. 588-',93,
1979.

*[Bad79b] Badal, D.Z., "On Efficient Monitoring of Database Assertions in

Distributed Databases", Proceedings of the Fourth Berkeley Work-
shop on Distributed Data Management and Computer Networks, pp. 125-
137, 1979. A

[Bad80] Badal, D.Z., "The Analysis of the Effects of Concurrency Control on
Distributed Database System Performance", Proceedings of the Sixth
International Conference on Very large Data Bases, pp. 376-383,l%-480.

*[Ban79] Banino, J.S., Kaiser, C. and Zimmermann, I., "Synchronization fo,

Distributed Systems Using a Single Broadcast Channel", Proceedings
of the First International Conference on Distributed Computing
Systems, pp. 330-338, 1979.

[Ber78] Bernstein, P.A., Rothnie, J.B., Goodman, N. and Papadimitriou, C.H.,
"The Concurrency Control Mechanism of ST)D-I: A System for Distri-
buted Databases (The Fully Redundant Case)", IEEE Transactions on
Software Engineering, SE-4(3), pp. 154-168, 1978.

[Ber791 Bernstein, P.A. and Goodman, N., "Approaches to Concurrency (on-
trol in Distributed Data Base Systems", Proceedings of the National
Computer Conference, Vol. 48, pp. 813-820, 1979.

[Ber8Oa] Bernstein, P.A. and Goodman, N., "Fundamental Algorithms for (on-
currency Control in Distributed Data Base Systems", CCA Technical
Report No. CCA-80-05, Computer Corporation of America, 10.

fBer8ObJ Bernstein, P.A., Shipman, D.W. and Rothnie, J.B., "Concurrency, Con-
trol in a System for Distributed Databases (SDD-I)", ACM Trans-
actions on Database Systems, 5(l), pp. 18-51, 1980. I

[Ber8Oc] Bernstein, P.A. and Shipman, D.W , "The Correctness of Concurrency
Control Mechanisms in a System for Distributed Databases (S11-I)",
ACM Transactions on Database Sy-stems, 5(1), pp. 52-68, 1980.

I

-75-

*[Bre79] Breitweiser, H. and Kersten, U., "Transaction and Catalog Mana;,e-

ment of the Distributed File Management System DISCO", Procu edings
of the Fifth International Conference on Very Large Data Bases,
pp. 340-350, 1979.

*[Cas79] Casanova, M.A., "The Concurrency Control Problem for I)atabas(Sys-

tems", Ph.D. Dissertation, Harvard University, Technical Report
TR-17-79, 1979.

[Cod7l] Codd, E.F., "A Relational Model of Data for Large Shared Data
Banks", Communications of the ACM, 13(6), pp. 377-387, 1971.

*[Che80a] Cheng, W.K. and Belford, G.G., "Analysis of Update Synchroniza-

tion Schemes in Distributed Databases", Proceedings of COMPCON,
pp. 450-455, 1980.

[Che8Ob] Cheng, W.K. and Belford, G.G., "Update Synchronization in Distri-
buted Databases", Proceedings of the Sixth International Confer-
ence on Very Large Data Bases, pp. 301-308, 1980.

[Dat77] Date, C.J., An Introduction to Database Systems, Second Edition,
Addison-Wesley, Reading, Mass., 1977.

*[Dep76] Deppe, M.E. and Fry, J.P., "Distributed Data Bases - A Summary of

Research", Computing Networks, 1(2), pp. 130-138, 1976.

[El177a] Ellis, C.A., "A Robuts Algorithm for Updating Duplicated Data-
bases", Proceedings of the Second Berkeley Workshop on Distri-
buted Data Management and Computer Networks, pp. 146-158, 1977.

[Ell77b] Ellis, C.A., "Consistency and Correctness of Duplicate Database
Systems", Proceedings of the Sixth ACM Symposium on Operating
System Principles, pp. 67-84, 1977.

[Eps78] Epstein, R., Stonebraker, M. and Wong, E., "Distributed Query
Processing in a Relational Data Base System", Proceedings of the
SIGMOD Conference, pp. 169-180, 1978.

[Esw76] Eswaran, K.P., Cray, J.N., Lorie, R.A. and Traiger, I.L., "The
Notions of Consistency and Predicate Locks in a Database System",
Communications of the ACM, 19(11), pp. 624-633, 1976.

[Gar78a] Garcia-Molina, H., "Performance Comparison of Update Algorithms
for Distribiited Databases, Parts 1-5", Technical Note No: 143,
Computer Systems Laboratory, Departments of Electrical Engineering
and Computer Science, Stanford University, 1978.

[Gar78b] Garcia-Molina, H., "Performance Comparison of Update Algorithms
for Di-cributed Databases, Part II", Technical Note No: 146,
Computer Systems Laboratory, Departments of Electrical Engi-
neering and Computer Science, Stanford University, 1978.

[Gar78c] Carcia-Molina, H., "Performance Comparison of Two Update Algori-
thms for Distri-uted Databases", Proceedings of the Third
Berkeley Workshop on Distributed Data Management and Computer
Networks, pp. 108-119, 1978.

[Gar79a] Garcia-Molina, H., "Centralized Control Update Algorithms for
Fully Redundant Distributed Databases", Proceedings of the First
International Conference on Distributed Computing Systems, pp.
699-705, 1979.

[Gar79b] Garcla-Molina, H., "A Concurrency Control Mechanism for Distri-

__ . •" , ' t
" '

... ,, II - - ~ r
" l ' 'J ' ' ' n

...

- 76 -

buted Databases Which Uses Centralized Controllers", Proceedings
of the Fourth Berkeley Workshop on Distributed Data Management
and Computer Networks, pp. 113-124, 1979.

[Gar79c] Garcia-Molina, H., "Partitioned Data, Multiple Controllers and
Transactions with an Initially Unspecified Base Set", Technical
Note No: 155, Computer Systems Laboratory, Departments of Elec-
trical Engineering and Computer Science, Stanford University,
1979.

[Gar79d] Garcia-Molina, H., "Crash Recovery in the Centralized Locking
Algorithm", Technical Note No: 153, Departments of Electrical
Engineering and Computer Science, Stanford University, 1979.

[Gar79e] Gardarin, G. and Chu, W.W., "A Reliable Distributed Control
Algorithm for Updating Replicated Databases", Proceedings of
the Sixth Data Communications Symposium, pp. 42-51, 1979.

*[Gel78] Gelenbe, E. and Sevcik, K., "Analysis of Update Synchronization

for Multiple Copy Databases", Proceedings of the Third Berkeley
Workshop on Distributed Data Management and Computer Networks,
pp. 69-90, 1978.

*[Gli80] Gligor, V.D. and Shattuck, S.H., "On Deadlock Detection in Dis-

tributed Systems", IEEE Transactions on Software Engineering,
SE-6(5), pp. 435-440, 1980.

[He175] Held, G., Stonebraker, M. and Wong, E., "INGRES- A Relational
Data Base System", Proceedings of the National Computer Corpor-
ation, pp. 409-416, 1975.

[Her79J Herman, D. and Verjus, J.P., "An Algorithm for Maintaining the
Consistency of Multiple Copies", Proceedings of the First Inter-
national Conference on Distributed Computing Systems, pp. 625-
631, 1979.

*[Is179] Isloor, S.S.,"Consistency Aspects of Distributed Databases", Ph.D.

Dissertation, University of Alberta, Department of Computing
Science, Technical Report TR79-4, 1979.

*[Joh75] Johnson, P.R. and Thomas, R.H., "The Maintenance of Duplicate

Databases", Network Working Group RFC 677 NIC 31507, 1975.

[Kan79] Kaneko, A., Nishira, Y., Tsuruoka, K. and Hattori, M., "Logical
Clock Synchronization Method for Duplicated Database Control",
Proceedings of the First International Conference on Distributed
Computing Systems, pp. 601-611, 1979.

*[Kaw79] Kawazu, S., Minami, S., Itoh, K. and Teranaka, K., "Two-Phase

Deadlock Detection Algorithm in Distributed Databases", Proceedings
of the Fifth International Conference on Very Large Data Bases,
pp. 360-367, 1979.

*[Koh80] Kohler, W.H., "Overview of Synchronization and Recovery Problems

in Distributed Databases", Proceedings of COMPCON, pp. 433-441,
1980

*rLam78J Lamport, L., "Time, Clocks, and The Ordering of Events in a Dis-

tributed System", Communications of the ACM, 21(7), pp. 558-565,
1978.

*ILam76I Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed Data
Storage System, Technical Report, Computer Science Laboratory,
Xerox Palo Alto Research Center, 1976.

- 77 -

[Le178] L.elann, C., "Algorithms for Distributed Date-Sharing Systems
Which use Tickets", Proceedings of the Third Berkeley Workshop

on Distributed Data Management and Computer Networks, pp. 259-
272, 1978.

*[Lin79] Lin, W.T.K., "Concurrency Control in a Multiple Copy Distributed

Database System", Proceedings of the Fourth Berkeley Workshop on
Distributed Data Management and Computer Networks, pp. 207-220, 1979.

*[Lom78] Lomet, D.B., "Coping with Deadlocks in Distributed Systems",

IBM Technical Report RC7460, 1978.

*[Mar80] Marsland, T.A. and Isloor, S.S., "Detection of Deadlocks in a

Distributed Database Systems", Canadian Journal of Operational
Research and Information Processing, 18(1), pp. 1-20, 1980.

[Men80] Menasce, D.A., Popek, G.J. and Muntz, R.R., "A Locking Based
Protocol for Resource Coordination in Distributed Databases",
ACM Transactions on Database Systems, 5(2), pp. 103-138, 1980.

[Mil80] Milenkovic, M., "Synchronization of Concurrent Updates in Re-
dundant Distributed Databases", Proceedings of the International
Symposium on Distributed Databases, pp. 49-65, 1980.

*[Mon78] Montgomery, W.A.,"Robust Concurrency Control for a Distributed

Information System", Ph.D. Dissertation, M.I.T., Department of
Electrical Engineering and Computer Science, Technical Report
MIT/LCS/TR-207, 1978.

[Rah79] Rahimi, S.K. and Franta, W.R., "A Posted Update Approach to Con-
currency Control in Distributed Database Systems", Proceedings
of the First International Conference on Distributed Computing
Systems, pp. 632-641, 1979.

[Ram79] Ramirez, R.J. and Santoro, N., "Distributed Control of Update in
Multiple-Copy Databases: A Time Optimal Algorithm", Proceedings
of the Fourth Berkeley Workshop on Distributed Data Management
and Computer Networks, pp. 191-206, 1979.

*[Ree78] Reed, D.P., "Naming and Synchronization in a Decentralized Com-

puter System", Ph.D. Dissertation, M.I.T., Department of Electri-
cal Engineering and Computer Science, Technical Report MIT/LCS/
TR-205, 1978.

[Ros78] Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M., "System Level
Concurrency Control for Distributed Database Systems", ACM
Transactions on Database Systems, 3(2), pp. 178-198, 1978.

*[Ros8O] Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M., "Consistency

and Serializibility in Concurrent Database Systems", SUNY Albany,
Technical Report 80-12, 1980.

[Rot77] Rothnie, J.B. and Coodman, N., "A Survey of Research and Develop-
ment in Distributed Database Management", Proceedings of the
Third International Conference on Very L-arge Data Bases, pp. 48-
62, 1977.

[Rot8O] Rothnie, J.B., et. al., "Introduction to a System for Distributed
Databases (SDD-1)", ACM Transactions on Database Systems, 5(1),

pp. 1-17, 1980.

- 78 -

*[Sha8O] Shave, M.J.R., "Problems of Integrity and Distributed Databases",

Software Practice and Experience, 10(2), pp. 135-147, 1980.

[Seg79] Seguin, J., Sergeant, G. and Wilms, P., "A Majority Consensus
Algorithm for the Consistency of Duplicated and Distributed
Information", Proceedings of the First International Conference
on Distributed Computing Systems, pp. 617-624, 1979.

[Sib76] Sibley, EH. (Ed.) Computing Surveys - Special Issue on Database
Management Systems, 8(1), 1976.

*[Ste761 Stearns, R.E., Lewis, P.M. and Rosenkrantz, D.J., "Concurrency

Control for Database Systems', Proceedings of the Seventeenth
Annual Sympousium on Foundations of Computer Science, pp. 19-36,
1976.

[Stu78] Stucki, M.J., Cox, J.R., Roman, G.C. and Turcu, P.N., "Coordi-
nating Concurrent Access in a Distributed Database Architecture",
Proceedings of the Fourth Workshop on Computer Architecture for
Non-Numeric Processing, pp. 60-64, 1978.

[Sto76] Stonebraker, M., et. al., "The Design and Implementation of INGRES",
ACM Transaction on Database Systems, 1(3), pp. 189-222, 1976.

[Sto78] Stonebraker, M., "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES", Proceedings of the Third
Berkeley Workshop on Distributed Data Management and Computer
Networks, pp. 235-258, 1978; also in IEEE Transactions on Soft-
ware Engineering, 5(3), pp. 188-194, 1979.

[Tho75J Thomas, R.H., "A Solution to the Update Problem for Multiple Copy
Databases Which Uses Distributed Control", BBN Report No. 3340,
Bolt, Beranek and Newman, Inc., 1975.

[Tho78] Thomas, R.H., "A Solution to the Update Problem for Multiple Copy
Databases", Proceedings of COMPCON, 1978.

[Tho79] Thomas, R.H., "A Majority Consensus Approach to Concurrency Con-
trol for Multiple Copy Databases", ACM Transactions on Database
Systems, 4(2), pp. 181-209, 1979.

[Won76] Wong, E. and Youssefi, K., "Decomposition - A Strategy for Query
Processing", ACM Transactions on Database Systems, 1(3), pp. 223-
241, 1976.

[Yam79I Yamazaki, H., Hikita, S., Yoshida, I., Kawamaki, S. and Matsushita,
Y., "A Hierarchical Structure for Concurrency Control in a Distri-
buted Database System", Proceedings of the Sixth Data Communica-
tions Symposium, pp. 35-41, 1979.

IILMEI

